Equation of the tangent to the circle, at the point $(1 , -1)$ whose centre is the point of intersection of the straight lines $x - y = 1$ and $2x + y= 3$ is
$x + 4y+ 3 = 0$
$3x - y- 4 = 0$
$x-3y-4 = 0$
$4x + y- 3 = 0$
The area of triangle formed by the tangent, normal drawn at $(1,\sqrt 3 )$ to the circle ${x^2} + {y^2} = 4$ and positive $x$-axis, is
The area of the triangle formed by the positive $x$-axis and the normal and the tangent to the circle $x^2 + y^2 = 4$ at $(1, \sqrt 3 )$ is
The equations of the tangents drawn from the origin to the circle ${x^2} + {y^2} - 2rx - 2hy + {h^2} = 0$ are
The two tangents to a circle from an external point are always
A circle $C_{1}$ passes through the origin $O$ and has diameter $4$ on the positive $x$-axis. The line $y =2 x$ gives a chord $OA$ of a circle $C _{1}$. Let $C _{2}$ be the circle with $OA$ as a diameter. If the tangent to $C _{2}$ at the point $A$ meets the $x$-axis at $P$ and $y$-axis at $Q$, then $QA : AP$ is equal to.