Gujarati
10-1.Circle and System of Circles
medium

If a circle, whose centre is $(-1, 1)$ touches the straight line $x + 2y + 12 = 0$, then the coordinates of the point of contact are

A

$\left( {\frac{{ - 7}}{2}, - 4} \right)$

B

$\left( {\frac{{ - 18}}{5},\frac{{ - 21}}{5}} \right)$

C

$(2,-7)$

D

$(-2, -5)$

Solution

(b) Let point of contact be $P({x_1},\;{y_1})$.

This point lies on line

${x_1} + 2{y_1} = – 12$….$(i)$

Gradient of $OP = {m_1} = \frac{{{y_1} – 1}}{{{x_1} + 1}}$

Gradient of $x + 2y + 12 = {m_2} = – \frac{1}{2}$

The two lines are perpendicular,

$\therefore \;{m_1}{m_2} = – 1$

$ \Rightarrow \left( {\frac{{{y_1} – 1}}{{{x_1} + 1}}} \right){\rm{ }}\left( {\frac{{ – 1}}{2}} \right) = – 1 \Rightarrow {y_1} – 1 = 2{x_1} + 2$

$ \Rightarrow 2{x_1} – {y_1} = – 3$….$(ii)$

On solving equation $(i)$ and $(ii)$, we get

$({x_1},\;{y_1}) = \left( {\frac{{ – 18}}{5},\;\frac{{ – 21}}{5}} \right)$ .

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.