उस वृत्त जिसका केन्द्र सरल रेखाओं $x-y=1$ तथा $2 x+y=3$ का प्रतिच्छेद बिंदु है, के बिंदु $(1,-1)$ पर खींची गई स्पर्श रेखा का समीकरण है
$x + 4y+ 3 = 0$
$3x - y- 4 = 0$
$x-3y-4 = 0$
$4x + y- 3 = 0$
तीन वृत्तों के समीकरण ${x^2} + {y^2} - 12x - 16y + 64 = 0,$ $3{x^2} + 3{y^2} - 36x + 81 = 0$ तथा ${x^2} + {y^2} - 16x + 81 = 0$ हैं, तब उस बिन्दु के निर्देशांक, जिससे तीनों वृत्तों पर खींची गई स्पर्श रेखाओं की लम्बाई बराबर हो, हैं
वृत्त ${x^2} + {y^2} + 2gx + 2fy + {c_1} = 0$ के किसी बिन्दु से वृत्त ${x^2} + {y^2} + 2gx + 2fy + c = 0$ पर खींची गयी स्पर्श रेखा की लम्बाई होगी
उस वृत्त का समीकरण जिसकी त्रिज्या $5$ है तथा जो वृत्त ${x^2} + {y^2} - 2x - 4y - 20 = 0$ को बिन्दु $(5, 5)$ पर बाह्यत: स्पर्श करता है, होगा
वृत्त ${x^2} + {y^2} = 4$ के बिन्दु $(1,\sqrt 3 )$ पर खींची गयी स्पर्श रेखा एवं अभिलम्ब एवं धनात्मक $x$-अक्ष से बने त्रिभुज का क्षेत्रफल है
यदि वक्र $x^{2}=y-6$ के बिंदु $(1,7)$ पर बनी स्पशरिखा वृत्त $x^{2}+y^{2}+16 x+12 y+c=0$ को स्पर्शे करती है, तो $c$ का मान है