गोले की त्रिज्या के मापन में त्रुटि $0.2\%$ है। इसके आयतन की गणना में त्रुटि ......... $\%$ होगी
$0.2$
$0.6$
$0.4$
$0.8$
ताप तथा वोल्टेज स्रोत में अप्रत्याशी उतार चढ़ाव के कारण मापन में त्रुटियाँ हैं :
एक भौतिक राशि $A =\frac{ P ^{3} Q ^{2}}{\sqrt{ R } S }$ के मापन के लिये, $P , Q , R$ तथा $S$ के मापन में प्रतिशत त्रुटियाँ क्रमशः $0.5 \%, 1 \%, 3 \%$ और $1.5 \%$ हैं। $A$ के मान में अधिकतम प्रतिशत त्रुटि ........... $\%$ होगी
द्रव्यमान तथा चाल के मापन से प्राप्त द्रव्यमान तथा चाल में प्रतिशत त्रुटियाँ क्रमश: $3\%$ तथा $2\%$ हैं। गतिज ऊर्जा की गणना में अधिकतम त्रुटि ......... $\%$ होगी
यदि सभी स्वतंत्र राशियों (independent quantities) की मापन न्रुटियाँ (measurement errors) ज्ञात हो, तो किसी निर्भर राशि (dependent quantity) की न्रुटि का परिकलन (calculation) किया जा सकता है। इस परिकलन में श्रेणी प्रसार (series expansion) का प्रयोग किया जाता है और इस प्रसार को न्रुटि (error) के पहले घात (first power) पर रून्डित (truncate) किया जाता है। उदाहरण स्वरूप, सम्बन्ध $z=x / y$ में यदि $x, y$ और $z$ की त्रुटियाँ क्रमशः $\Delta x, \Delta y$ और $\Delta z$ हों, तो
$z \pm \Delta z=\frac{x \pm \Delta x}{y \pm \Delta y}=\frac{x}{y}\left(1 \pm \frac{\Delta x}{x}\right)\left(1 \pm \frac{\Delta y}{y}\right)^{-1} .$
$\left(1 \pm \frac{\Delta y}{y}\right)^{-1}$ का श्रेणी प्रसार, $\Delta y / y$ में पहले घात तक, $1 \mp(\Delta y / y)$ है। स्वतंत्र राशियों की आपेक्षिक त्रुटियाँ (relative errors) सदैव जोड़ी जाती हैं। इसलिए $z$ की त्रुटि होगी
$\Delta z=z\left(\frac{\Delta x}{x}+\frac{\Delta y}{y}\right) .$
उपरोक्त परिकलन में $\Delta x / x \ll 1, \Delta y / y \ll 1$ माने गये हैं। इसलिए इन राशियों की उच्चतर घातें (higher powers) उपेक्षित हैं।
($1$) एक विमा-रहित (dimensionless) राशि $a$ को माप कर, एक अनुपात (ratio) $r=\frac{(1-a)}{(1+a)}$ का परिकलन करना है। यदि $a$ की मापन की त्रुटि $\Delta a$ है ( $\Delta a / a \ll 1)$, तो $r$ के परिकलन की त्रुटि $\Delta r$ क्या होगी?
$(A)$ $\frac{\Delta a }{(1+ a )^2}$ $(B)$ $\frac{2 \Delta a }{(1+ a )^2}$ $(C)$ $\frac{2 \Delta a}{\left(1-a^2\right)}$ $(D)$ $\frac{2 a \Delta a}{\left(1-a^2\right)}$
($2$) एक प्रयोग के आरंभ में रेडियोएक्टिव नाभिकों की संख्या $3000$ है। प्रयोग के पहले $1.0$ सेकंड में $1000 \pm 40$ नाभिकों का क्षय हो जाता है। यदि $|x| \ll 1$ हो, तो $x$ के पहले घात तक $\ln (1+x)=x$ है। क्षयांक (decay constant) $\lambda$ के निर्धारण में त्रुटि $\Delta \lambda, s^{-1}$ में, हैtion of the decay constant $\lambda$, in $s ^{-1}$, is
$(A) 0.04$ $(B) 0.03$ $(C) 0.02$ $(D) 0.01$
इस प्रश्न के उतर दीजिये $1$ ओर $2.$
Searle's प्रयोग द्वारा यंग प्रत्यास्थता गुणांक, $\left(Y=\frac{4 MLg }{\pi / d^2}\right)$ निकालने के लिए एक $L=2 \ m$ लंबे व $d=0.5 \ mm$ व्यास के तार का उपयोग किया गया है। भार $M=2.5 \ kg$ लगाने पर तार की लम्बाई में । $=0.25 \ mm$ की वद्धी हुई । $d$ और $l$ को नापने के लिए क्रमशः स्कूरेंज और माइक्रोमीटर का प्रयोग किया गया। दोनों के पिच $0.5 \ mm$ एवं दोनों के सरकुलर स्केल पर $100$ निशान है। $Y$ के निकाले गये मान में अधिकतम प्रसंभाव्य त्रुटि में