નીચે દર્શાવેલ અસમતાઓ ભૌમિતિક કે અન્ય કોઈ રીતે સાબિત કરો :
$(a)$ $\quad| a + b | \leq| a |+| b |$
$(b)$ $\quad| a + b | \geq| a |-| b |$
$(c)$ $\quad| a - b | \leq| a |+| b |$
$(d)$ $\quad| a - b | \geq| a |-| b |$
તેમાં સમતાનું ચિહ્ન ક્યારે લાગુ પડે છે ?
$(a)$ Let two vectors $\vec{a}$ and $\vec{b}$ be represented by the adjacent sides of a parallelogram $OMNP$, as shown in the given figure.
Here, we can write:
$|\overrightarrow{ OM }|=|\vec{a}|$
$|\overrightarrow{ MN }|=|\overrightarrow{ OP }|=|\vec{b}|$
$|\overrightarrow{ ON }|=|\vec{a}+\vec{b}|$
In a triangle, each side is smaller than the sum of the other two sides. Therefore, in $\Delta$ $OMN$, we have:
$ON \,<\, ( OM + MN )$
$|\vec{a}+\vec{b}| \,<\, |\vec{a}|+|\vec{b}|$
If the two vectors $\vec{a}$ and $\vec{b}$ act along a straight line in the same direction, then we can write:
$|\vec{a}+\vec{b}|=|\vec{a}|+|\vec{b}|$
Combining above equations we get:
$|\vec{a}+\vec{b}| \leq|\vec{a}|+|\vec{b}|$
$(b)$ Let two vectors $\vec{a}$ and $\vec{b}$ be represented by the adjacent sides of a parallelogram $OMNP$, as shown in the given figure.
In a triangle, each side is smaller than the sum of the other two sides. Therefore, in $\Delta$ $OMN$, we have
$ON + MN \,>\, OM$
$ON + OM \,>\, MN$
$|\overrightarrow{ ON }|\,>\,|\overrightarrow{ OM }-\overrightarrow{ OP }|$
$(\because OP = MN )$
$|\vec{a}+\vec{b}|\,>\,|| \vec{a}|-| \vec{b}||$
If the two vectors $\vec{a}$ and $\vec{b}$ act along a straight line in the same direction, then we can write:
$|\vec{a}+\vec{b}|=|| \vec{a}|-| \vec{b}||$
Combining above equations, we get:
$|\vec{a}+\vec{b}| \geq|| \vec{a}|-| \vec{b}||$
$(c)$ Let two vectors $\vec{a}$ and $\vec{b}$ be represented by the adjacent sides of a parallelogram $PORS$, as shown in the given figure.
Here we have:
$|\overrightarrow{ OR }|=|\overrightarrow{ PS }|=|\vec{b}|$
$|\overrightarrow{ OP }|=|\vec{a}|$
In a triangle, each side is smaller than the sum of the other two sides. Therefore, in $\Delta$ $OPS$, we have:
$OS \,<\, OP + PS$
$|\vec{a}-\vec{b}| \,<\, |\vec{a}|+|-\vec{b}|$
$|\vec{a}-\vec{b}| \,<\, |\vec{a}|+|\vec{b}|$
If the two vectors act in a straight line but in opposite directions, then we can write:
$|\vec{a}-\vec{b}|=|\vec{a}|+|\vec{b}|$
Combining above equations, we get:
$|\vec{a}-\vec{b}| \leq|\vec{a}|+|\vec{b}|$
$(d)$ Let two vectors $\vec{a}$ and $\vec{b}$ be represented by the adjacent sides of a parallelogram $PORS$, as shown in the given figure.
The following relations can be written for the given parallelogram. $OS + PS > OP$
$OS \,>\, OP-PS $
$|\vec{a}-\vec{b}|\,>\,|\vec{a}|-|\vec{b}|$
The quantity on the $LHS$ is always positive and that on the $RHS$ can be positive or negative. To make both quantities positive, we take modulus on both sides as:
||$\vec{a}-\vec{b}||\,>\,|| \vec{a}|-| \vec{b}||$
$|\vec{a}-\vec{b}|\,>\,|| \vec{a}|-| \vec{b}||$
If the two vectors act in a straight line but in the opposite directions, then we can write:
$|\vec{a}-\vec{b}|=|| \vec{a}|-| \vec{b}||$
Combining equations , we get:
$|\vec{a}-\vec{b}| \geq|| \vec{a}|-| \vec{b} |$
સદિશ $\mathop A\limits^ \to $ અને $\mathop B\limits^ \to $ અક્ષની સાપેક્ષે અનુક્રમે $20^°$ અને $110^°$ ખૂણો બનાવે છે. આ સદિશોનું મૂલ્ય અનુક્રમે $5\, m$ અને $12 \,m$ છે. આ સદિશોને પરિણામી સદિશનું મૂલ્ય.......$m$
લિસ્ટ $- I$ ને લિસ્ટ $- II$ સાથે જોડો
નીચેના વિકલ્પોમાંથી સાચો જવાબ પસંદ કરો
જો $\,{\rm{|}}\mathop {\rm{A}}\limits^ \to \,\, + \;\,\mathop B\limits^ \to \,|\,\, = \,\,\,{\rm{|}}\mathop {\rm{A}}\limits^ \to \,\, - \;\,\mathop B\limits^ \to \,|\,$ હોય $\vec A $ અને $\vec B $ વચ્ચેનો ખૂણો ........ $^o$
$ABC$ એ સમબાજુ ત્રિકોણ છે. દરેક બાજુની લંબાઈ $'a'$ અને તેનું પરિકેન્દ્ર $O$ છે. $\overrightarrow{A B}+\overrightarrow{A C}=n \overrightarrow{A O}$ હોય તો $n = $ ........