Evaluate $\Delta=\left|\begin{array}{ccc}0 & \sin \alpha & -\cos \alpha \\ -\sin \alpha & 0 & \sin \beta \\ \cos \alpha & -\sin \beta & 0\end{array}\right|$
Expanding along $\mathrm{R}_{1},$ we get
$\Delta {\text{ }} = 0\left| {\begin{array}{*{20}{c}}
0&{\sin \beta } \\
{ - \sin \beta }&0
\end{array}} \right| - \sin \alpha \left| {\begin{array}{*{20}{c}}
{ - \sin \alpha }&{\sin \beta } \\
{\cos \alpha }&0
\end{array}} \right| - \cos \alpha \left| {\begin{array}{*{20}{c}}
{ - \sin \alpha }&0 \\
{\cos \alpha }&{ - \sin \beta }
\end{array}} \right|$
$=0-\sin \alpha(0-\sin \beta \cos \alpha)-\cos \alpha(\sin \alpha \sin \beta-0)$
$=\sin \alpha \sin \beta \cos \alpha-\cos \alpha \sin \alpha \sin \beta=0$
The value of $a$ for which the system of equations
$a^3x + ( a + 1)^3y + (a + 2)^3z = 0$ ; $ax + (a + 1) y + ( a + 2) z = 0$ ; $x + y + z = 0$, has a non zero solution is
The values of $x,y,z$ in order of the system of equations $3x + y + 2z = 3,$ $2x - 3y - z = - 3$, $x + 2y + z = 4,$ are
The sum of the real roots of the equation $\left| {\begin{array}{*{20}{c}}
x&{ - 6}&{ - 1}\\
2&{ - 3x}&{x - 3}\\
{ - 3}&{2x}&{x = 2}
\end{array}} \right| = 0$ is equal to
Evaluate $\left|\begin{array}{cc}x & x+1 \\ x-1 & x\end{array}\right|$
$\Delta = \left| {\,\begin{array}{*{20}{c}}{a + x}&b&c\\b&{x + c}&a\\c&a&{x + b}\end{array}\,} \right|$,which of the following is a factor for the above determinant