The roots of the equation $\left| {\,\begin{array}{*{20}{c}}0&x&{16}\\x&5&7\\0&9&x\end{array}\,} \right| = 0$ are
$0,\,\,12,\,\,12$
$0, 12, -12$
$0, 12, 16$
$0, 9, 16$
The roots of the equation $\left| {\,\begin{array}{*{20}{c}}{x - 1}&1&1\\1&{x - 1}&1\\1&1&{x - 1}\end{array}\,} \right| = 0$ are
Let $A = \left[ {\begin{array}{*{20}{c}}5&{5\alpha }&\alpha \\0&\alpha &{5\alpha }\\0&0&5\end{array}} \right]$, If ${\left| A \right|^2} = 25$, then $\left| \alpha \right|$ equals
If area of triangle is $35$ $\mathrm{sq}$ $\mathrm{units}$ with vertices $(2,-6),(5,4)$ and $(\mathrm{k}, 4) .$ Then $\mathrm{k}$ is
If $q_1$ , $q_2$ , $q_3$ are roots of the equation $x^3 + 64$ = $0$ , then the value of $\left| {\begin{array}{*{20}{c}}
{{q_1}}&{{q_2}}&{{q_3}} \\
{{q_2}}&{{q_3}}&{{q_1}} \\
{{q_3}}&{{q_1}}&{{q_2}}
\end{array}} \right|$ is
Evaluate the determinants : $\left|\begin{array}{cc}2 & 4 \\ -5 & -1\end{array}\right|$