$\Delta=\left|\begin{array}{ccc}0 & \sin \alpha & -\cos \alpha \\ -\sin \alpha & 0 & \sin \beta \\ \cos \alpha & -\sin \beta & 0\end{array}\right|$ નું મૂલ્ય શોધો.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Expanding along $\mathrm{R}_{1},$ we get

$\Delta {\text{ }} = 0\left| {\begin{array}{*{20}{c}}
  0&{\sin \beta } \\ 
  { - \sin \beta }&0 
\end{array}} \right| - \sin \alpha \left| {\begin{array}{*{20}{c}}
  { - \sin \alpha }&{\sin \beta } \\ 
  {\cos \alpha }&0 
\end{array}} \right| - \cos \alpha \left| {\begin{array}{*{20}{c}}
  { - \sin \alpha }&0 \\ 
  {\cos \alpha }&{ - \sin \beta } 
\end{array}} \right|$

$=0-\sin \alpha(0-\sin \beta \cos \alpha)-\cos \alpha(\sin \alpha \sin \beta-0)$

$=\sin \alpha \sin \beta \cos \alpha-\cos \alpha \sin \alpha \sin \beta=0$

Similar Questions

ધારો કે સમીકરણ સંહતિ $x+2 y+3 z=5,2 x+3 y+z=9,4 x+3 y+\lambda z=\mu$ ને અસંખ્ય ઉકેલો છે. તો $\lambda+2 \mu$=___________. 

  • [JEE MAIN 2024]

જો ${\Delta _r} = \left| {\begin{array}{*{20}{c}}
  r&{2r - 1}&{3r - 2} \\ 
  {\frac{n}{2}}&{n - 1}&a \\ 
  {\frac{1}{2}n\left( {n - 1} \right)}&{{{\left( {n - 1} \right)}^2}}&{\frac{1}{2}\left( {n - 1} \right)\left( {3n - 4} \right)} 
\end{array}} \right|$ તો $\sum\limits_{r = 1}^{n - 1} {{\Delta _r}} $ ની કિમત  . . .

  • [JEE MAIN 2014]

ધારો કે $\omega $ એક એવી સંકર સંખ્યા છે કે જેથી $2\omega + 1 = z$ જયાં $z = \sqrt { - 3} $ . જો $\left| {\begin{array}{*{20}{c}}1&1&1\\1&{ - {\omega ^2} - 1}&{{\omega ^2}}\\1&{{\omega ^2}}&{{\omega ^7}}\end{array}} \right| = 3k$ હોય,તો $k$ મેળવો. .

  • [JEE MAIN 2017]

અહી $[\lambda]$ એ મહતમ પૃણાંક વિધેય છે.  $\lambda$ ની કિમંતો નો ગણ મેળવો કે જેથી સમીકરણ સંહતિ  $x+y+z=4,3 x+2 y+5 z=3$ $9 x+4 y+(28+[\lambda]) z=[\lambda]$ નો ઉકેલ મળે.

  • [JEE MAIN 2021]

$\left| {\,\begin{array}{*{20}{c}}{1/a}&1&{bc}\\{1/b}&1&{ca}\\{1/c}&1&{ab}\end{array}\,} \right| = $