$\Delta=\left|\begin{array}{ccc}0 & \sin \alpha & -\cos \alpha \\ -\sin \alpha & 0 & \sin \beta \\ \cos \alpha & -\sin \beta & 0\end{array}\right|$ નું મૂલ્ય શોધો.
Expanding along $\mathrm{R}_{1},$ we get
$\Delta {\text{ }} = 0\left| {\begin{array}{*{20}{c}}
0&{\sin \beta } \\
{ - \sin \beta }&0
\end{array}} \right| - \sin \alpha \left| {\begin{array}{*{20}{c}}
{ - \sin \alpha }&{\sin \beta } \\
{\cos \alpha }&0
\end{array}} \right| - \cos \alpha \left| {\begin{array}{*{20}{c}}
{ - \sin \alpha }&0 \\
{\cos \alpha }&{ - \sin \beta }
\end{array}} \right|$
$=0-\sin \alpha(0-\sin \beta \cos \alpha)-\cos \alpha(\sin \alpha \sin \beta-0)$
$=\sin \alpha \sin \beta \cos \alpha-\cos \alpha \sin \alpha \sin \beta=0$
ધારો કે સમીકરણ સંહતિ $x+2 y+3 z=5,2 x+3 y+z=9,4 x+3 y+\lambda z=\mu$ ને અસંખ્ય ઉકેલો છે. તો $\lambda+2 \mu$=___________.
જો ${\Delta _r} = \left| {\begin{array}{*{20}{c}}
r&{2r - 1}&{3r - 2} \\
{\frac{n}{2}}&{n - 1}&a \\
{\frac{1}{2}n\left( {n - 1} \right)}&{{{\left( {n - 1} \right)}^2}}&{\frac{1}{2}\left( {n - 1} \right)\left( {3n - 4} \right)}
\end{array}} \right|$ તો $\sum\limits_{r = 1}^{n - 1} {{\Delta _r}} $ ની કિમત . . .
ધારો કે $\omega $ એક એવી સંકર સંખ્યા છે કે જેથી $2\omega + 1 = z$ જયાં $z = \sqrt { - 3} $ . જો $\left| {\begin{array}{*{20}{c}}1&1&1\\1&{ - {\omega ^2} - 1}&{{\omega ^2}}\\1&{{\omega ^2}}&{{\omega ^7}}\end{array}} \right| = 3k$ હોય,તો $k$ મેળવો. .
અહી $[\lambda]$ એ મહતમ પૃણાંક વિધેય છે. $\lambda$ ની કિમંતો નો ગણ મેળવો કે જેથી સમીકરણ સંહતિ $x+y+z=4,3 x+2 y+5 z=3$ $9 x+4 y+(28+[\lambda]) z=[\lambda]$ નો ઉકેલ મળે.
$\left| {\,\begin{array}{*{20}{c}}{1/a}&1&{bc}\\{1/b}&1&{ca}\\{1/c}&1&{ab}\end{array}\,} \right| = $