सारणिक $\left|\begin{array}{ccc}102 & 18 & 36 \\ 1 & 3 & 4 \\ 17 & 3 & 6\end{array}\right|$ का मान ज्ञात कीजिए

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Note that $\left|\begin{array}{ccc}102 & 18 & 36 \\ 1 & 3 & 4 \\ 17 & 3 & 6\end{array}\right|=\left|\begin{array}{ccc}6(17) & 6(3) & 6(6) \\ 1 & 3 & 4 \\ 17 & 3 & 6\end{array}\right|=6\left|\begin{array}{ccc}17 & 3 & 6 \\ 1 & 3 & 4 \\ 17 & 3 & 6\end{array}\right|=0$

Similar Questions

यदि $\Delta = \left| {\,\begin{array}{*{20}{c}}a&b&c\\x&y&z\\p&q&r\end{array}\,} \right|$, तो $\left| {\,\begin{array}{*{20}{c}}{ka}&{kb}&{kc}\\{kx}&{ky}&{kz}\\{kp}&{kq}&{kr}\end{array}\,} \right|$=

यदि $\omega $ इकाई  का एक घनमूल हो, तो  $\left| {\begin{array}{*{20}{c}}1&\omega &{{\omega ^2}}\\\omega &{{\omega ^2}}&1\\{{\omega ^2}}&1&\omega \end{array}} \right|$=

$\left| {\,\begin{array}{*{20}{c}}1&{1 + ac}&{1 + bc}\\1&{1 + ad}&{1 + bd}\\1&{1 + ae}&{1 + be}\end{array}\,} \right| = $

$\left| {\,\begin{array}{*{20}{c}}a&{a + b}&{a + 2b}\\{a + 2b}&a&{a + b}\\{a + b}&{a + 2b}&a\end{array}\,} \right|$ =

सारणिकों के गुणधर्मों का प्रयोग करके सिद्ध कीजिए :

$\left|\begin{array}{ccc}1 & x & x^{2} \\ x^{2} & 1 & x \\ x & x^{2} & 1\end{array}\right|=\left(1-x^{3}\right)^{2}$