3 and 4 .Determinants and Matrices
medium

$\left|\begin{array}{ccc}x & y & x+y \\ y & x+y & x \\ x+y & x & y\end{array}\right|$ નું મૂલ્ય શોધો.

A

$2\left(x^{3}+y^{3}\right)$

B

$2\left(x^{3}-y^{3}\right)$

C

$-2\left(x^{3}-y^{3}\right)$

D

$-2\left(x^{3}+y^{3}\right)$

Solution

$\Delta=\left|\begin{array}{ccc}x & y & x+y \\ y & x+y & x \\ x+y & x & y\end{array}\right|$

Applying $R_{1} \rightarrow R_{1}+R_{2}+R_{3},$ we have:

$\Delta=\left|\begin{array}{ccc}2(x+y) & 2(x+y) & 2(x+y) \\ y & x+y & x \\ x+y & x & y\end{array}\right|$

$=2(x+y)\left|\begin{array}{ccc}1 & 1 & 1 \\ y & x+y & x \\ x+y & x & y\end{array}\right|$

Applying $C_{2} \rightarrow C_{2}-C_{1}$ and $C_{3} \rightarrow C_{3}-C_{1},$ we have:

$\Delta=2(x+y)\left|\begin{array}{ccc}1 & 0 & 0 \\ y & x & x-y \\ x+y & -y & -x\end{array}\right|$

Expanding along $R_{1},$ we have:

$\Delta=2(x+y)\left[-x^{2}+y(x-y)\right]$

$=-2(x+y)\left(x^{2}+y^{2}-y x\right)$

$=-2\left(x^{3}+y^{3}\right)$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.