3 and 4 .Determinants and Matrices
medium

જો $a,b,c$ એ ધન પૂર્ણાંક હોય , તો $\Delta = \left| {\,\begin{array}{*{20}{c}}{{a^2} + x}&{ab}&{ac}\\{ab}&{{b^2} + x}&{bc}\\{ac}&{bc}&{{c^2} + x}\end{array}\,} \right|$ એ . . . વડે વિભાજ્ય છે.

A

${x^3}$

B

${x^2}$

C

$({a^2} + {b^2} + {c^2})$

D

એકપણ નહી.

Solution

(b) $\Delta = \frac{1}{{abc}}\,\left| {\,\begin{array}{*{20}{c}}{{a^3} + ax}&{{a^2}b}&{{a^2}c}\\{a{b^2}}&{{b^3} + bx}&{{b^2}c}\\{{c^2}a}&{{c^2}b}&{{c^3} + cx}\end{array}\,} \right|$

=$({{a}^{2}}+{{b}^{2}}+{{c}^{2}}+x)\times \left| \,\begin{matrix}
   1 & 1 & 1  \\
   {{b}^{2}} & {{b}^{2}}+x & {{b}^{2}}  \\
   {{c}^{2}} & {{c}^{2}} & {{c}^{2}}+x  \\
\end{matrix}\, \right|$

$\{$Applying ${R_1} \to {R_1} + {R_2} + {R_3}\} $

$ = ({a^2} + {b^2} + {c^2} + x)\,\left| {\,\begin{array}{*{20}{c}}1&0&0\\{{b^2}}&x&0\\{{c^2}}&0&x\end{array}\,} \right|$$\left. \begin{array}{l}{C_2} \to {C_2} – {C_1}\\{C_3} \to {C_3} – {C_1}\end{array} \right\}$

= ${x^2}({a^2} + {b^2} + {c^2} + x)$.

Hence $\Delta $ is divisible by ${x^2}$ as well as by $ x.$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.