Evaluate the following:

$\frac{5 \cos ^{2} 60^{\circ}+4 \sec ^{2} 30^{\circ}-\tan ^{2} 45^{\circ}}{\sin ^{2} 30^{\circ}+\cos ^{2} 30^{\circ}}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\frac{5 \cos ^{2} 60^{\circ}+4 \sec ^{2} 30^{\circ}-\tan ^{2} 45^{\circ}}{\sin ^{2} 30^{\circ}+\cos ^{2} 30^{\circ}}$

$=\frac{5\left(\frac{1}{2}\right)^{2}+4\left(\frac{2}{\sqrt{3}}\right)^{2}-(1)^{2}}{\left(\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}$

$=\frac{5\left(\frac{1}{4}\right)+\left(\frac{16}{3}\right)-1}{\frac{1}{4}+\frac{3}{4}}$

$=\frac{\frac{15+64-12}{12}}{\frac{4}{4}}=\frac{67}{12}$

Similar Questions

If $3 \cot A=4,$ check whether $\frac{1-\tan ^{2} A}{1+\tan ^{2} A}=\cos ^{2} A-\sin ^{2} A$ or not.

Evaluate the following:

$\sin 60^{\circ} \cos 30^{\circ}+\sin 30^{\circ} \cos 60^{\circ}$

Express the trigonometric ratios $\sin A , \sec A$ and $\tan A$ in terms of $\cot A$.

Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

$\frac{1+\sec A}{\sec A}=\frac{\sin ^{2} A}{1-\cos A}$

Prove that $\frac{\cot A-\cos A}{\cot A+\cos A}=\frac{\operatorname{cosec} A-1}{\operatorname{cosec} A+1}$