निम्नलिखित के मान निकालिए :
$\frac{5 \cos ^{2} 60^{\circ}+4 \sec ^{2} 30^{\circ}-\tan ^{2} 45^{\circ}}{\sin ^{2} 30^{\circ}+\cos ^{2} 30^{\circ}}$
$\frac{5 \cos ^{2} 60^{\circ}+4 \sec ^{2} 30^{\circ}-\tan ^{2} 45^{\circ}}{\sin ^{2} 30^{\circ}+\cos ^{2} 30^{\circ}}$
$=\frac{5\left(\frac{1}{2}\right)^{2}+4\left(\frac{2}{\sqrt{3}}\right)^{2}-(1)^{2}}{\left(\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}$
$=\frac{5\left(\frac{1}{4}\right)+\left(\frac{16}{3}\right)-1}{\frac{1}{4}+\frac{3}{4}}$
$=\frac{\frac{15+64-12}{12}}{\frac{4}{4}}=\frac{67}{12}$
आकृति में, $\tan P - cot R$ का मान ज्ञात कीजिए।
यदि $\sec \theta=\frac{13}{12}$, हो तो अन्य सभी त्रिकोणमितीय अनुपात परिकलित कीजिए।
बताइए कि निम्नलिखित सत्य हैं या असत्य हैं। कारण सहित अपने उत्तर की पुष्टि कीजिए।
$\sin ( A + B )=\sin A +\sin B$
$9 \sec ^{2} A-9 \tan ^{2} A=..........$
सर्वसमिका $\sec ^{2} \theta=1+\tan ^{2} \theta$ का प्रयोग करके सिद्ध कीजिए कि
$\frac{\sin \theta-\cos \theta+1}{\sin \theta+\cos \theta-1}=\frac{1}{\sec \theta-\tan \theta}$