Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

$\frac{\cos A}{1+\sin A}+\frac{1+\sin A}{\cos A}=2 \sec A$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\frac{\cos A}{1+\sin A}+\frac{1+\sin A}{\cos A}=2 \sec A$

$L.H.S.\,=\frac{\cos A}{1+\sin A}+\frac{1+\sin A}{\cos A}$

$=\frac{\cos ^{2} A+(1+\sin A)^{2}}{(1+\sin A)(\cos A)}$

$=\frac{\cos ^{2} A+1+\sin ^{2} A+2 \sin A}{(1+\sin A)(\cos A)}$

$=\frac{\sin ^{2} A+\cos ^{2} A+1+2 \sin A}{(1+\sin A)(\cos A)}$

$=\frac{1+1+2 \sin A}{(1+\sin A)(\cos A)}=\frac{2+2 \sin A}{(1+\sin A)(\cos A)}$

$=\frac{2(1+\sin A)}{(1+\sin A)(\cos A)}=\frac{2}{\cos A}=2 \sec A$

$=R . H . S .$

Similar Questions

In $\triangle$ $OPQ$, right-angled at $P$, $OP =7\, cm$ and $OQ - PQ =1\, cm$ (see $Fig.$). Determine the values of $\sin Q$ and $\cos Q$.

Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

$\sqrt{\frac{1+\sin A }{1-\sin A }}=\sec A +\tan A$

Evaluate:

$\frac{\sin 18^{\circ}}{\cos 72^{\circ}}$

$\frac{2 \tan 30^{\circ}}{1+\tan ^{2} 30^{\circ}}=$

Evaluate:

$\frac{\tan 26^{\circ}}{\cot 64^{\circ}}$