$9 \sec ^{2} A-9 \tan ^{2} A=..........$
$9$
$1$
$8$
$0$
$9 \sec ^{2} A-9 \tan ^{2} A$
$=9\left(\sec ^{2} A-\tan ^{2} A\right)$
$=9(1)\left[A s \sec ^{2} A-\tan ^{2} A=1\right]$
$=9$
Evaluate:
$\operatorname{cosec} 31^{\circ}-\sec 59^{\circ}$
Evaluate the following:
$2 \tan ^{2} 45^{\circ}+\cos ^{2} 30^{\circ}-\sin ^{2} 60^{\circ}$
$\cos 48^{\circ}-\sin 42^{\circ}$
Given $15 \cot A =8,$ find $\sin A$ and $\sec A .$
$\frac{\tan 26^{\circ}}{\cot 64^{\circ}}$
Confusing about what to choose? Our team will schedule a demo shortly.