Evaluate:
$\sin 25^{\circ} \cos 65^{\circ}+\cos 25^{\circ} \sin 65^{\circ}$
$2$
$-1$
$0$
$1$
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
$(\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2}=7+\tan ^{2} A+\cot ^{2} A$
$9 \sec ^{2} A-9 \tan ^{2} A=..........$
If $\cot \theta=\frac{7}{8},$ evaluate:
$(i)$ $\frac{(1+\sin \theta)(1-\sin \theta)}{(1+\cos \theta)(1-\cos \theta)}$
$(ii)$ $\cot ^{2} \theta$
If $\sec 4 A =\operatorname{cosec}\left( A -20^{\circ}\right),$ where $4 A$ is an acute angle, find the value of $A$. (in $^{\circ}$)
State whether the following are true or false. Justify your answer.
$\sin (A+B)=\sin A+\sin B$