Evaluate:

$\sin 25^{\circ} \cos 65^{\circ}+\cos 25^{\circ} \sin 65^{\circ}$

  • A

    $2$

  • B

    $-1$

  • C

    $0$

  • D

    $1$

Similar Questions

Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

$(\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2}=7+\tan ^{2} A+\cot ^{2} A$

$9 \sec ^{2} A-9 \tan ^{2} A=..........$

If $\cot \theta=\frac{7}{8},$ evaluate:

$(i)$ $\frac{(1+\sin \theta)(1-\sin \theta)}{(1+\cos \theta)(1-\cos \theta)}$

$(ii)$ $\cot ^{2} \theta$

If $\sec 4 A =\operatorname{cosec}\left( A -20^{\circ}\right),$ where $4 A$ is an acute angle, find the value of $A$. (in $^{\circ}$)

State whether the following are true or false. Justify your answer.

$\sin (A+B)=\sin A+\sin B$