In a right triangle $A B C$, right-angled at $B$. if $\tan A =1,$ then verify that $2 \sin A \cos A=1$
In $\triangle ABC , \tan A =\frac{ BC }{ AB }=1$ (see $Fig.$)
i.e. $BC = AB$
Let $AB = BC =k,$ where $k$ is a positive number.
Now,$AC=\sqrt{ AB ^{2}+ BC ^{2}}$
$=\sqrt{(k)^{2}+(k)^{2}}=k \sqrt{2}$
Therfore, $\sin A=\frac{ BC }{ AC }=\frac{1}{\sqrt{2}} \quad$ and $\cos A =\frac{ AB }{ AC }=\frac{1}{\sqrt{2}}$
So, $\quad 2 \sin A \cos A =2\left(\frac{1}{\sqrt{2}}\right)\left(\frac{1}{\sqrt{2}}\right)=1,$ which is the required value.
If $3 \cot A=4,$ check whether $\frac{1-\tan ^{2} A}{1+\tan ^{2} A}=\cos ^{2} A-\sin ^{2} A$ or not.
If $\tan 2 A=\cot \left(A-18^{\circ}\right),$ where $2 A$ is an acute angle, find the value of $A .$ (in $^{\circ}$)
Evaluate the following:
$\frac{\cos 45^{\circ}}{\sec 30^{\circ}+\operatorname{cosec} 30^{\circ}}$
$\frac{2 \tan 30^{\circ}}{1-\tan ^{2} 30^{\circ}}=$
Evaluate:
$\sin 25^{\circ} \cos 65^{\circ}+\cos 25^{\circ} \sin 65^{\circ}$