जाँच कीजिए कि क्या रोले का प्रमेय निम्नलिखित फलनों में से किन-किन पर लागू होता है। इन उदाहरणों से क्या आप रोले के प्रमेय के विलोम के बारे में कुछ कह सकते हैं?

$f(x)=[x]$ के लिए $x \in[-2,2]$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

By Rolle's Theorem, for a function $f:[a, b] \rightarrow R,$ if

a) $f$ is continuous on $[a, b]$

b) $f$ is continuous on $(a, b)$

c) $f(a)=f(b)$

Then, there exists some $c \in(a, b)$ such that $f^{\prime}(c)=0$

Therefore, Rolle's Theorem is not applicable to those functions that do not satisfy any of the three conditions of the hypothesis.

$f(x)=[x]$ for $x \in[-2,2]$

It is evident that the given function $f(x)$ is not continuous at every integral point.

In particular, $f(x)$ is not continuous at $x=-2$ and $x=2$

$\Rightarrow f=(x)$ is not continuous in $[-2,2]$

Also, $f(-2)=[2]=-2$ and $f(2)=[2]=2$

$\therefore f(-2) \neq f(2)$

The differentiability of in $(-2,2)$ is checked as follows.

Let $\mathrm{n}$ be an integer such that $n \in(-2,2)$

The left hand limit of $f$ at $x=\mathrm{n}$ is,

$\mathop {\lim }\limits_{h \to {0^\prime }} \frac{{f(n + h) - f(n)}}{h} = \mathop {\lim }\limits_{h \to {0^\prime }} \frac{{[n + h] - [n]}}{h} = \mathop {\lim }\limits_{h \to {0^\prime }} \frac{{n - 1 - n}}{h} = \mathop {\lim }\limits_{h \to {0^\prime }} \frac{{ - 1}}{h} = \infty $

The right hand limit of $f$ at $x=n$ is,

$\mathop {\lim }\limits_{h \to {0^\prime }} \frac{{f(n + h) - f(n)}}{h} = \mathop {\lim }\limits_{h \to {0^\prime }} \frac{{[n + h] - [n]}}{h} = \mathop {\lim }\limits_{h \to {0^\prime }} \frac{{n - n}}{h} = \mathop {\lim }\limits_{h \to {0^\prime }} 0 = 0$

Since the left and right hand limits of $f$ at $x=n$ are not equal, $f$ is not differentiable at $x=n$

$\therefore f$ is not continuous in $(-2,2).$

It is observed that $f$ does not satisfy all the conditions of the hypothesis of Rolle's Theorem.

Hence, Roller's Theorem is not applicable for $f(x)=[x]$ for $x \in[-2,2]$

Similar Questions

यदि फलन $f(x) = a{x^3} + b{x^2} + 11x - 6$ रोले प्रमेय की शतोर्ं को अन्तराल $[1, 3]$ के लिए सन्तुष्ट करता है तथा $f'\left( {2 + \frac{1}{{\sqrt 3 }}} \right) = 0$, तब $a$ और $b$ के मान क्रमश: हैं

इस प्रश्न में $[x]$ वह अधिकतम पूर्णांक है जो दी गयी वास्तविक संख्या $x$ से कम या बराबर है। दिये गए फलन $f(x)=[x] \sin \pi x$ पर विचार करें। निम्नलिखित में से कौन सा कथन उचित है:

  • [KVPY 2014]

जाँच कीजिए कि क्या रोले का प्रमेय निम्नलिखित फलनों में से किन-किन पर लागू होता है। इन उदाहरणों से क्या आप रोले के प्रमेय के विलोम के बारे में कुछ कह सकते हैं?

$f(x)=[x]$ के लिए $x \in[5,9]$

फलनों के लिए माध्यमान प्रमेय की अनुपयोगिता की जाँच कीजिए।:

$(i)$ $f(x)=[x]$ के लिए $x \in[5,9]$

$(ii)$ $f(x)=[x]$ के लिए $x \in[-2,2]$

$(iii)$ $f(x)=x^{2}-1$ के लिए $x \in[1,2]$

माना कि $f, g:[-1,2] \rightarrow R$ संतत फलन है जो की अंतराल $(-1,2)$ में दो बार अवकलनीय (twice differentiable) है। माना कि $f$ और $g$ के मान, बिन्दुओं $-1,0$ और $2$ पर निम्न सारणी में दर्शाए गए है -

  $x=-1$ $x=0$ $x=2$
$f(x)$ $3$ $6$ $0$
$g(x)$ $0$ $1$ $-1$

यदि प्रत्येक अंतराल $(-1,0)$ और $(0,2)$ में फलन $( f -3 g )$ " कभी भी शून्य का मान नही लेता है, तव सही कथन है (हैं)

$(A)$ $(-1,0) \cup(0,2)$ में, $f^{\prime}(x)-3 g^{\prime}(x)=0$ के तीन ही हल (exactly three solutions) हैं

$(B)$ $(-1,0)$ में, $f ^{\prime}( x )-3 g ^{\prime}( x )=0$ के एक ही हल (exactly one solutions) है

$(C)$ $(0,2)$ में, $f^{\prime}(x)-3 g^{\prime}(x)=0$ के एक ही हल (exactly one solution ) है

$(D)$ $f ^{\prime}( x )-3 g ^{\prime}( x )=0$ को $(-1,0)$ में दो ही हल (exactly two solutions) है और $(0,2)$ में दो ही हल है

  • [IIT 2015]