નિરપેક્ષ ત્રુટિ, સરેરાશ નિરપેક્ષ ત્રુટિ, સાપેક્ષ ત્રુટિ અને પ્રતિશત ત્રુટિ સમજાવો.
$(a)$ નિરપેક્ષ ત્રુટિ $(Absolute Error)$ :
કોઈ ભૌતિક રાશિના માપનના સાચા મૂલ્ય અને વ્યક્તિગત માપેલ મૂલ્યના તફાવતના માને
(ધન તફાવત)અવલોકનની નિરપેક્ષ ત્રુટિ કહે છે અને તેને $|\Delta a|$ વડે દર્શાવાય છે.
જો ભૌતિક રાશિનું સાયું મૂલ્ય ન જાણતાં હોઈએ ત્યારે અવલોકનના સરેરાશ મૂલ્યને સાચા મૂલ્ય (વાસ્તવિક મૂલ્ય) તરીકે લેવામાં આવે છે.
ધારો કે કોઈ ભૌતિક રાશિ $a$ ના $n$ અવલોકનના મૂલ્યો $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ છે. અવલોકનનું સરેરાશ મૂલ્ય $\bar{a}$ અથવા $a$સરેરાશછે.
$\therefore a_{\text Avg.}=\frac{a_{1}+a_{2}+a_{3}+\ldots a_{n}}{n}$
અથવા
$a_{\text {Avg }}=\frac{\sum_{i=1}^{n} a_{i}}{n}$ જ્યાં $i=1,2,3, \ldots, n$
$(b)$ ધારો કે દરેક અવલોક્નમાં ઉદ્ભભવતી નિરપેક્ષ ત્રુટિ અનુક્રમે $\Delta a_{1}, \Delta a_{2}, \Delta a_{3}, \ldots, \Delta a_{n}$ છે. દરેક અવલોકનમાં મળતી નિરપેક્ષ ત્રુટિ,
$\Delta a_{1}=a_{1}-a_{\text {Avg}}$
$\Delta a_{2}=a_{2}-a_{\text {Avg }}$
$\Delta a_{3}=a_{3}-a_{\text {Avg}}$
$ \Delta a_{n}=a_{n}-a_{\text {Avg}}$
કોઈ પણ ભૌતિક રાશિનું માપેલું અવલોકન તેના સાચાં મૂલ્યથી એટલું જ વધારે હોય છે જેટલું સાચાં મૂલ્યથી ઓછું હોવાની સંભાવના હોય.
આથી, દરેક અવલોકનની ત્રુટિની ગણતરીમાં કેટલીક ત્રુટિ $(\Delta)$ ધન મળશે અને કેટલીક ઋણ મળશે. પણ, નિરપેક્ષ ત્રુટિ હંમેશા ધન લેવાય.
દરેક અવલોકનોની નિરપેક્ષ ત્રુટિના માનાંકનું સરેરાશ મૂલ્ય એ પરિણામની નિરપેક્ષ ત્રુટિનું સરેરાશ $(\Delta a)_{Avg.}$
$\therefore$ સરેરાશ નિરપેક્ષ ત્રુટિ $(\Delta a)_{\text Avg.}$
$=\frac{\left|\Delta a_{1}\right|+\left|\Delta a_{2}\right|+\ldots\left|\Delta a_{n}\right|}{n}$
$=\frac{\sum_{i=1}^{n}\left|\Delta a_{i}\right|}{n}$
જ્યાં $i=1,2,3, \ldots, n$
ભૌતિક રાશી $a$ ને નીચે મુજબ દર્શાવાય.
$a=a_{\text {Avg. }} \pm(\Delta a)_{\text {Avg.}}$
$\text { OR } a_{\text {Avg. }}-\Delta a_{\text {Avg.}} \leq a \leq a_{\text {Avg.}}+\Delta a_{\text {Avg.}}$
જ્યારે તાંબાના ગોળાને ગરમ કરવામાં આવે છે ત્યારે અવલોકનમાં મહત્તમ પ્રતિશત ફેરફાર શેમાં જોવા મળશે ?
એક $0.2\, cm$ $(0.001\, cm$ લઘુત્તમ માપશક્તિ ધરાવતી ફૂટ પટ્ટી વડે માપતા) જેટલી ત્રિજ્યા, $1\, m\, (1 \,mm$ લઘુત્તમ માપશક્તિ ધરાવતી મીટર પટ્ટી વડે માપતા) જેટલી લંબાઈ અને $1 \;kg$ $(1\,g$ લઘુત્તમ માપશક્તિ સાથે) જેટલું દળ ધરાવતાં તારનો યંગ મોડયુલસ માપવા માટે તેને લટકાવતા તેમાં $0.5\, cm \,(0.001\, cm$ લઘુત્તમ માપશક્તિ ધરાવતા સ્કેલ) જેટલું ખેંચાણ મેળવામાં છે. આ પ્રયોગ દ્વારા અપાતા યંગ મોડ્યુલસમાં કેટલી આંશિક ત્રુટિ હશે? ($\%$ માં)
સાદા લોલકથી ગુરુત્વાકર્ષી પ્રવેગ $(g)$ માપવાના એક પ્રયોગમાં $1$ સેકન્ડ વિભેદન (રીઝોલ્યુશન) ધરાવતી ધડીયાળ વડે $100$ દોલનોનાં મપાયેલા સમયથી મળતો આવર્તકાળ $0.5$ સેકન્ડ છે. જો $1\,mm$ ચોક્કસાઈથી મપાયેલ લંબાઈ $10\,cm$ છે. $g$ ના માપનમાં મળતી ચોકકસાઈ $x \%$ છે. $x$ નું મૂલ્ય કેટલું હશે?
ભૂલ અને ત્રુટિ વચ્ચેનો ભેદ સમજાવો.
કોઈ ભૌતિક રાશિ $p$ ને $p\, = a^{1/2}\, b^2\, c^3\, d^{-4}$ થી દર્શાવેલ છે. જો $a, b, c$ અને $d$ ના માપનમાં રહેલી સાપેક્ષ ત્રુટિ અનુક્રમે $2\% , 1\%, 3\%$ અને $5\%$ હોય, તો $P$ માં રહેલી સાપેક્ષ ત્રુટિ ........... $\%$ હશે.