Explain effect of multiplication or division of error on final result.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Suppose two physical quantities $\mathrm{A}$ and $\mathrm{B}$ have measured values $\mathrm{A} \pm \Delta \mathrm{A}, \mathrm{B} \pm \Delta \mathrm{B}$ respectively. Where $\triangle \mathrm{A}$ and $\triangle \mathrm{B}$ are their absolute errors.

For a product: Suppose the product of $\mathrm{A}$ and $\mathrm{B}$ is $\mathrm{Z}$ and the absolute error in $\mathrm{Z}$ is $\Delta Z$.

$\therefore \mathrm{Z}=\mathrm{AB}$

$\therefore \mathrm{Z} \pm \Delta \mathrm{Z}=(\mathrm{A} \pm \Delta \mathrm{A})(\mathrm{B} \pm \Delta \mathrm{B})$

$\therefore \mathrm{Z} \pm \Delta \mathrm{Z}=\mathrm{AB} \pm \mathrm{A} \Delta \mathrm{B} \pm \mathrm{B} \Delta \mathrm{A} \pm(\Delta \mathrm{A} \Delta \mathrm{B})$

Dividing the left side by $Z$ and right side by $A B$,

$1 \pm \frac{\Delta Z}{Z}=1 \pm \frac{\Delta A}{A} \pm \frac{\Delta B}{B} \pm\left(\frac{\Delta A}{A}\right)\left(\frac{\Delta B}{B}\right)$

$\frac{\Delta \mathrm{A}}{\mathrm{A}}$ and $\frac{\Delta \mathrm{B}}{\mathrm{B}}$ are very small hence their product will be very small and can be neglected. Neglecting negative sign for maximum error,

$\frac{\Delta Z}{Z}=\frac{\Delta A}{A}+\frac{\Delta B}{B}$

For a Quotient : Suppose the quotient of $A$ and $B$ is $Z$ and the absolute error of $Z$ is $\Delta Z$.

$\therefore \mathrm{Z}=\frac{\mathrm{A}}{\mathrm{B}}$

$\therefore \mathrm{Z} \pm \Delta \mathrm{Z}=\frac{\mathrm{A} \pm \Delta \mathrm{A}}{\mathrm{B} \pm \Delta \mathrm{B}}$

$Z\left(1 \pm \frac{\Delta Z}{Z}\right)=\frac{A\left(1 \pm \frac{\Delta A}{A}\right)}{B\left(1 \pm \frac{\Delta B}{B}\right)}$

Now, dividing the left side by $Z$ and right side by $\frac{A}{B}$,

$1 \pm \frac{\Delta Z}{Z}=\frac{1 \pm \frac{\Delta A}{A}}{1 \pm \frac{\Delta B}{B}}$

$\therefore 1 \pm \frac{\Delta Z}{Z}=\left(1 \pm \frac{\Delta A}{A}\right)\left(1 \pm \frac{\Delta B}{B}\right)^{-1}$

Similar Questions

Find the relative error in $Z,$ if $Z=\frac{A^{4} B^{1 / 3}}{ C D^{3 / 2}}$

The values of a number of quantities are used in a mathematical formula. The quantity that should be most precise and accurate in measurement is the one

Two resistors of resistances $R_{1}=100 \pm 3$ $ohm$ and $R_{2}=200 \pm 4$ $ohm$ are connected $(a)$ in series, $(b)$ in parallel. Find the equivalent resistance of the $(a)$ series combination, $(b)$ parallel combination. Use for $(a)$ the relation $R=R_{1}+R_{2}$ and for $(b)$ $\frac{1}{R^{\prime}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$ and $\frac{\Delta R^{\prime}}{R^{\prime 2}}=\frac{\Delta R_{1}}{R_{1}^{2}}+\frac{\Delta R_{2}}{R_{2}^{2}}$

A physical quantity is given by $X = {M^a}{L^b}{T^c}$. The percentage error in measurement of $M,L$ and $T$ are $\alpha ,\beta $ and $\gamma $ respectively. Then maximum percentage error in the quantity X is

The resistance $R=V / I$ where $V=(100 \pm 5)\;V$ and $I=(10 \pm 0.2) \;A$. Find the percentage error in $R .$