The dimensional formula for a physical quantity $x$ is $\left[ M ^{-1} L ^{3} T ^{-2}\right]$. The errors in measuring the quantities $M , L$ and $T$ respectively are $2 \%, 3 \%$ and $4 \%$. The maximum percentage of error that occurs in measuring the quantity $x$ is
$9$
$10$
$14$
$19$
Error in the measurement of radius of a sphere is $0.2\%$. The error in the calculated value of its volume is ......... $\%$
Time intervals measured by a clock give the following readings :
$1.25 \;s , 1.24\; s , 1.27\; s , 1.21 \;s$ and $1.28\; s$
What is the percentage relative error of the observations?
What is the fractional error in $g$ calculated from $T = 2\pi \sqrt {l/g} $ ? Given fraction errors in $T$ and $l$ are $ \pm x$ and $ \pm y$ respectively?
A simple pendulum is being used to determine the value of gravitational acceleration $\mathrm{g}$ at a certain place. The length of the pendulum is $25.0\; \mathrm{cm}$ and a stop watch with $1\; \mathrm{s}$ resolution measures the time taken for $40$ oscillations to be $50\; s$. The accuracy in $g$ is ....... $\%$
The radius of a sphere is $(5.3 \pm 0.1) \,cm$. The percentage error in its volume is