વિધુતક્ષેત્ર અને તેનું ઉદગમ તથા ચુંબકીયક્ષેત્ર અને તેનાં ઉદગમની સમજૂતી આપો.
વિદ્યુતક્ષેત્રનું ઉદગમ વિદ્યુતભાર છે.
ધારો કે, વિદ્યુતભાર $Q$ સ્થિર હોય તો તેની આસપાસ $Q$ ના લીધે મળતું વિદ્યુતક્ષેત્ર, $\overrightarrow{ E }=\frac{k Q }{r^{2}} \cdot \hat{r}$ અથવા $\overrightarrow{ E }=\frac{ Q \hat{r}}{4 \pi \epsilon_{0} r^{2}}$ છે.
જ્યાં $\hat{r}$ એ સ્થાન સદિશ $\vec{r}$ ની દિશામાંનો એકમ સદિશ અને $\overrightarrow{ E }$ એ વિદ્યુતક્ષેત્ર છે જે સદિશ ક્ષેત્ર છે.
વિદ્યુતક્ષેત્ર $\overrightarrow{ E }$ માં રહેલા અન્ય $q$ વિદ્યુતભાર પર ક્ષેત્રના લીધે લાગતું વિદ્યુતબળ,
$\overrightarrow{ F } =q \overrightarrow{ E }$
$=\frac{k Q q}{r^{2}} \hat{r}$ અથવા $\frac{ Q q}{4 \pi \in_{0} r^{2}} \cdot \hat{r}$
વિદ્યુતક્ષેત્ર એ ઊર્જા અને વેગમાનનું વહન કરી શકે છે તથા તે તત્ક્ષણા ઉદ્ભવતું નથી અને વહન માટે ચોક્કસ સમય લે છે. તે અવકાશના દરેક સ્થાન પર આધારિત છે પણ સમય સાથે બદલાઈ શકે છે એટલે કે તે સમયનું વિધેય છે. આ પ્રકરણમાં આપણે એવું ધારીશું કે વિદ્યુતક્ષેત્ર સમય સાથે બદલાતું નથી.
જો એક કરતાં વધારે વિદ્યુતભારોના કારણે કોઈ એક બિંદુએ વિદ્યુતક્ષેત્ર મેળવવું હોય તો બધા વિદ્યુતભારોના કારણે મળતાં વિદ્યુતક્ષેત્રોનો સદિશ સરવાળો કરવો પડે. જેને સંપાતપણાનો સિદ્વાંત કહે છે.
પરીક્ષણ વિદ્યુતભારની મદદથી વિદ્યુતક્ષેત્ર $\overrightarrow{ F }=\overrightarrow{ E } q_{0}$ સૂત્રથી જાણી શકાય છે જ્યાં $q_{0}$ એ પરીક્ષણ વિદ્યુતભાર છે.
ગતિમાન વિદ્યુતભારો વિદ્યુતક્ષેત્ર તો ઉત્પન્ન કરે છે તેમજ ચુંબકીયક્ષેત્ર પણ ઉત્પન્ન કરે છે જેને $\overrightarrow{ B }(\vec{r})$ વડે દર્શાવાય છે.
ચુંબકીયક્ષેત્ર સદિશ રાશિ છે અને તે અવકાશના દરેક બિંદુએ વ્યાખ્યાયિત કરી શકાય છે તેમજ સમય પર આધારિત હોઈ શકે છે.
એક કરતાં વધારે ચુંબકીયક્ષેત્રના ઉદગમોના લીધે ઉત્પન્ન થતાં યુંબકીયક્ષેત્રોનો સદિશ સરવાળો કરવાથી તે બિંદુ આગળનું ચુંબકીયક્ષેત્ર મળે છે એટલે કे તે સંપાતપણાના સિદ્ધાંતને અનુસરે છે.
સમાન ગતિ ઊર્જાના પ્રોટોન, ડયુટેરોન અને આલ્ફા કણ અચળ ચુંબકીય ક્ષેત્રમાં વર્તૂળાકાર પથમાં ગતિ કરી રહયા છે. પ્રોટોન, ડયુટેરોન અને $\alpha $-કણની ત્રિજ્યાઓ અનુક્રમે $r_p, r_d$ અને $r_{\alpha}$ છે. નીચેને કયો સંબંધ સાચો છે :
$100\,V$ ના વિદ્યુતસ્થિતિમાનના તફાવત થી પ્રવેગિત કરેલ $2\,\mu\,C$ નો વિદ્યુતભાર $4\,mT$ તીવ્રતાના સમાન ચુંબકીયક્ષેત્રમાં ક્ષેત્રને લંબ દિશામાં દાખલ થાય છે. વિદ્યુતભારીત કણ ચુંબકીય ક્ષેત્રની અંદર $3\,cm$ ત્રિજ્યાનું અર્ધવર્તુળ પૂર્ણ કરે છે. વિદ્યુતભારીત કણનું દળ $........\times 10^{-18}\,kg$ હશે.
એકસમાન ચુંબકીયક્ષેત્રમાં વિદ્યુતભારભારીત કણ અચળ ઝડપ $v$ થી $R$ ત્રિજયાના વર્તુળમાર્ગ પર પરિક્રમણ કરે છે.આ ગતિનો આવર્તકાળ ......
કોઈ એક ક્ષેત્રમાં સ્થિત વિદ્યુતક્ષેત્ર અને ચુંબકીયક્ષેત્ર પ્રવર્તે છે.ચુંબકીયક્ષેત્ર $\vec B = {B_0}\left( {\hat i + 2\hat j - 4\hat k} \right)$ મુજબ આપવામાં આવે છે. જો એક વિજભાર આ ક્ષેત્રમાં $\vec v = {v_0}\left( {3\hat i - \hat j + 2\hat k} \right)$ ના વેગથી ગતિ કરતો હોય ત્યારે કોઈ બળ અનુભવતો ના હોય તો $SI$ એકમમાં વિદ્યુતક્ષેત્ર કેટલું હશે?
$-2\;\mu C\;$ વિદ્યુતભાર ધરાવતો કણ $2\;T$ ચુંબકીયક્ષેત્રમાં $y$ દિશામાં દાખલ થાય, જ્યારે તેનો વેગ $\left( {2\hat i + 3\hat j} \right) \times \;{10^6}\,m/s$ ત્યારે તેના પર લાગતું ચુંબકીય બળ .....