Explain the parallelogram method for vector addition. Also explain that this is comparable to triangle method.
$\vec{A}$ and $\vec{B}$ are to be added as shown in figure $(a).$
Select a point $\mathrm{O}$ as shown in figure $(b)$.
Represent $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$ such that their lengths and directions remain unchanged and their tails remain at $\mathrm{O}$.
Draw a parallelogram $\square^{\mathrm{m}}$ OPSQ in which $\vec{A}$ and $\vec{B}$ are adjacent sides of it. Draw a diagonal OS from $\mathrm{O}$.
Vector $\overrightarrow{\mathrm{OS}}$ represent resultant vector of addition of $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$.
$\overrightarrow{\mathrm{OS}}=\overrightarrow{\mathrm{OP}}+\overrightarrow{\mathrm{OQ}} \quad \therefore \overrightarrow{\mathrm{R}}=\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}$
Triangle method for vector addition is shown in figure $(c)$.
If is clear that both methods give equal resultant vector. Hence, both methods are comparable to each other.
Here, magnitude of resultant vector $\overrightarrow{\mathrm{R}},|\overrightarrow{\mathrm{R}}| \leq|\overrightarrow{\mathrm{A}}|+|\overrightarrow{\mathrm{B}}|$
The angle between vector $(\overrightarrow{{A}})$ and $(\overrightarrow{{A}}-\overrightarrow{{B}})$ is :
Establish the following vector inequalities geometrically or otherwise:
$(a)$ $\quad| a + b | \leq| a |+| b |$
$(b)$ $\quad| a + b | \geq| a |-| b |$
$(c)$ $\quad| a - b | \leq| a |+| b |$
$(d)$ $\quad| a - b | \geq| a |-| b |$
When does the equality sign above apply?
Which pair of the following forces will never give resultant force of $2\, N$
Given that; $A = B = C$. If $\vec A + \vec B = \vec C,$ then the angle between $\vec A$ and $\vec C$ is $\theta _1$. If $\vec A + \vec B+ \vec C = 0,$ then the angle between $\vec A$ and $\vec C$ is $\theta _2$. What is the relation between $\theta _1$ and $\theta _2$ ?
If the magnitude of sum of two vectors is equal to the magnitude of difference of the two vectors, the angle between these vectors is ........ $^o$