Extremities of the latera recta of the ellipses $\frac{{{x^2}}}{{{a^2}}}\,\, + \,\,\frac{{{y^2}}}{{{b^2}}}\, = \,1\,$ $(a > b)$ having a given major axis $2a$ lies on
$x^2 = a(a - y)$
$x^2 = a (a + y)$
$y^2 = a(a + x)$
both $(A)$ and $(B)$
If the foci of the ellipse $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{{{b^2}}} = 1$ and the hyperbola $\frac{{{x^2}}}{{144}} - \frac{{{y^2}}}{{81}} = \frac{1}{{25}}$ coincide, then the value of ${b^2}$ is
The eccentricity of the ellipse ${\left( {\frac{{x - 3}}{y}} \right)^2} + {\left( {1 - \frac{4}{y}} \right)^2} = \frac{1}{9}$ is
The locus of the foot of perpendicular drawn from the centre of the ellipse ${x^2} + 3{y^2} = 6$ on any tangent to it is
If the line $x\cos \alpha + y\sin \alpha = p$ be normal to the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$, then
The length of the axes of the conic $9{x^2} + 4{y^2} - 6x + 4y + 1 = 0$, are