Gujarati
Hindi
10-2. Parabola, Ellipse, Hyperbola
normal

Extremities of the latera recta of the ellipses $\frac{{{x^2}}}{{{a^2}}}\,\, + \,\,\frac{{{y^2}}}{{{b^2}}}\, = \,1\,$ $(a > b)$  having a given major axis $2a$  lies on

A

$x^2 = a(a - y)$

B

$x^2 = a (a + y)$

C

$y^2 = a(a + x)$

D

both $(A)$ and $(B)$

Solution

$h = \pm ae ; k = \pm \frac{{{b^2}}}{a}\,$
$k = \pm a(1 -e^2) = \pm  a \left( {1 – \frac{{{h^2}}}{{{a^2}}}} \right)\,$ $=$ $ \pm$  $\left( {a – \frac{{{h^2}}}{a}} \right)\,$ 
$+ ve\ sign , k =$ $a – \frac{{{h^2}}}{a}\,\,$ $\Rightarrow$ $\frac{{{h^2}}}{a}\,\, = \,a – k$ $\Rightarrow$ $h^2 = a ( a – k)$ $\Rightarrow$ $(A)$ 
$- ve\ sign , k = – a + \frac{{{h^2}}}{a}\,\,$  $\Rightarrow$ $h^2 = a (a + k)$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.