- Home
- Standard 11
- Mathematics
10-2. Parabola, Ellipse, Hyperbola
normal
Let $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1, a>b$ be an ellipse with foci $F_1$ and $F_2$. Let $AO$ be its semi-minor axis, where $O$ is the centre of the ellipse. The lines $A F_1$ and $A F_2$, when extended, cut the ellipse again at points $B$ and $C$ respectively. Suppose that the $\triangle A B C$ is equilateral. Then, the eccentricity of the ellipse is
A
$\frac{1}{\sqrt{2}}$
B
$\frac{1}{\sqrt{3}}$
C
$\frac{1}{3}$
D
$\frac{1}{2}$
(KVPY-2018)
Solution

(d)
Given, $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$
$A B C$ is an equilateral traingles.
$\ln \Delta A O F_2^1$
$\tan 30^{\circ}=\frac{O F_2}{O A}$
$\frac{1}{\sqrt{3}} =\frac{a e}{b}$
$b =\sqrt{3} a e$
$b^2 =3 a^2 e^2$
$\frac{b^2}{a^2} =3 e^2$
$4 e^2 =1$
$e^2 =\frac{1}{4} \Rightarrow e=\frac{1}{2}$
Standard 11
Mathematics