- Home
- Standard 11
- Physics
આકૃતિ $(a)$ બતાવે છે કે $k$ બળ-અચળાંકવાળી એક સ્પ્રિંગના એક છેડાને દૃઢ રીતે જડેલ છે અને તેના મુક્ત છેડા સાથે $m$ દ્રવ્યમાન જોડેલ છે. મુક્ત છેડા પર લગાડવામાં આવતું બળ $F$ એ સ્પ્રિંગને ખેંચે છે. આકૃતિ $(b)$ માં આ જ સ્પ્રિંગ બંને છેડાથી મુક્ત છે અને એક દ્રવ્યમાન $m$ બંને છેડા પર જોડેલ છે. આકૃતિ $(b)$ માંની સ્પ્રિંગના દરેક છેડાને એક સમાન બળ $F$ દ્વારા ખેંચવામાં આવેલ છે.
$(a)$ આ બે કિસ્સાઓમાં સ્પ્રિંગનું મહત્તમ વિસ્તરણ કેટલું છે ?
$(b)$ જો આકૃતિ $(a)$ માંનું દ્રવ્યમાન અને આકૃતિ $(b)$ નાં બે દ્રવ્યમાનોને જો મુક્ત કરવામાં આવે તો દરેક કિસ્સામાં દોલનોનો આવર્તકાળ કેટલો થશે ?

Solution
For the one block system:
When a force $F$, is applied to the free end of the spring, an extension $l$, is produced. For the maximum extension, it can be written as:
$F=k l$
Where, $k$ is the spring constant
$I=\frac{F}{k}$
Hence, the maximum extension produced in the spring,
For the two block system:
The displacement ( $x$ ) produced in this case is
$x=\frac{l}{2}$
Net force, $F=+2 k x=2 k \frac{l}{2}$
$\therefore l=\frac{F}{k}$
For the one block system:
For mass ( $m$ ) of the block, force is written as:
$F=m a=m \frac{d^{2} x}{d t^{2}}$
Where, $x$ is the displacement of the block in time $t$ $\therefore m \frac{d^{2} x}{d t^{2}}=-k x$
It is negative because the direction of elastic force is opposite to the direction of displacement. $\frac{d^{2} x}{d t^{2}}=-\left(\frac{k}{m}\right) x=-\omega^{2} x$
Where, $\omega^{2}=\frac{k}{m}$
$\omega=\sqrt{\frac{k}{m}}$
Where, $\omega$ is angular frequency of the oscillation
$\therefore$ Time period of the oscillation, $T=\frac{2 \pi}{\omega}$
$=\frac{2 \pi}{\sqrt{\frac{k}{m}}}=2 \pi \sqrt{\frac{m}{k}}$
For the two block system:
$F=m \frac{d^{2} x}{d t^{2}}$
$m \frac{d^{2} x}{d t^{2}}=-2 k x$
It is negative because the direction of elastic force is opposite to the direction of displacement.
$\frac{d^{2} x}{d t^{2}}=-\left[\frac{2 k}{m}\right] x=-\omega^{2} x$
Where,
Angular frequency, $\omega=\sqrt{\frac{2 k}{m}}$
$\therefore$ Time period, $T=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{m}{2 k}}$