- Home
- Standard 11
- Physics
चित्र $(a)$ में $k$ बल-स्थिरांक की किसी कमानी के एक सिरे को किसी दृढ़ आधार से जकड़ा तथा दूसरे मुक्त सिरे से एक द्रव्यमान $m$ जुड़ा दर्शाया गया है । कमानी के मुक्त सिरे पर बल $F$ आरोपित करने से कमानी तन जाती है । चित्र $(b)$ में उसी कमानी के दोनों मुक्त सिरों से द्रव्यमान $m$ जुड़ा दर्शाया गया है । कमानी के दोनों सिरों को चित्र में समान बल $F$ द्वारा तानित किया गया है ।
$(a)$ दोनों प्रकरणों में कमानी का अधिकतम विस्तार क्या है ?
$(b)$ यदि $(a)$ का द्रव्यमान तथा $(b)$ के दोनों द्रव्यमानों को मुक्त छोड़ दिया जाए, तो प्रत्येक प्रकरण में दोलन का आवर्तकाल ज्ञात कीजिए ।

Solution
For the one block system:
When a force $F$, is applied to the free end of the spring, an extension $l$, is produced. For the maximum extension, it can be written as:
$F=k l$
Where, $k$ is the spring constant
$I=\frac{F}{k}$
Hence, the maximum extension produced in the spring,
For the two block system:
The displacement ( $x$ ) produced in this case is
$x=\frac{l}{2}$
Net force, $F=+2 k x=2 k \frac{l}{2}$
$\therefore l=\frac{F}{k}$
For the one block system:
For mass ( $m$ ) of the block, force is written as:
$F=m a=m \frac{d^{2} x}{d t^{2}}$
Where, $x$ is the displacement of the block in time $t$ $\therefore m \frac{d^{2} x}{d t^{2}}=-k x$
It is negative because the direction of elastic force is opposite to the direction of displacement. $\frac{d^{2} x}{d t^{2}}=-\left(\frac{k}{m}\right) x=-\omega^{2} x$
Where, $\omega^{2}=\frac{k}{m}$
$\omega=\sqrt{\frac{k}{m}}$
Where, $\omega$ is angular frequency of the oscillation
$\therefore$ Time period of the oscillation, $T=\frac{2 \pi}{\omega}$
$=\frac{2 \pi}{\sqrt{\frac{k}{m}}}=2 \pi \sqrt{\frac{m}{k}}$
For the two block system:
$F=m \frac{d^{2} x}{d t^{2}}$
$m \frac{d^{2} x}{d t^{2}}=-2 k x$
It is negative because the direction of elastic force is opposite to the direction of displacement.
$\frac{d^{2} x}{d t^{2}}=-\left[\frac{2 k}{m}\right] x=-\omega^{2} x$
Where,
Angular frequency, $\omega=\sqrt{\frac{2 k}{m}}$
$\therefore$ Time period, $T=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{m}{2 k}}$