- Home
- Standard 12
- Mathematics
यदि $A =\left[\begin{array}{rrr}2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0\end{array}\right]$ है तो $A ^{2}-5 A +6 I ,$ का मान ज्ञात कीजिए।
Solution
We have $A^{2}=A \times A$
$A^{2}=A A\left[\begin{array}{ccc}2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0\end{array}\right]\left[\begin{array}{ccc}2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0\end{array}\right]$
$2(2)+0(2)+1(1) 2(0)+0(1)+1(-1) 2(1)+0(3)+1(0)$
$2(2)+1(2)+3(1) 2(0)+1(1)+3(-1) 2(1)+1(3)+3(0)$
$1(2)+(-1)(2)+0(1) 1(0)+(-1)(1)+0(-1) 1(1)+(-1)(3)+0(0)$
$=\left[\begin{array}{lll}4+0+1 & 0+0-1 & 2+0+0 \\ 4+2+3 & 0+1-3 & 2+3+0 \\ 2-2+0 & 0-1+0 & 1-3+0\end{array}\right]$
$=\left[\begin{array}{ccc}5 & -1 & 2 \\ 9 & -2 & 5 \\ 0 & -1 & -2\end{array}\right]$
Substituting the matrices in the given equation $: A^{2}-5 A+6 I$
$ = \left[ {\begin{array}{*{20}{c}}
5&{ – 1}&2 \\
9&{ – 2}&5 \\
0&{ – 1}&{ – 2}
\end{array}} \right]$ $ – 5\left[ {\begin{array}{*{20}{c}}
2&0&1 \\
2&1&3 \\
1&{ – 1}&0
\end{array}} \right]$ $ + 6\left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right]$
$ = \left[ {\begin{array}{*{20}{c}}
5&{ – 1}&2 \\
9&{ – 2}&5 \\
0&{ – 1}&{ – 2}
\end{array}} \right]$ $ – \left[ {\begin{array}{*{20}{c}}
{10}&0&5 \\
{10}&5&{15} \\
5&{ – 5}&0
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
6&0&0 \\
0&6&0 \\
0&0&6
\end{array}} \right]$
$ = \left[ {\begin{array}{*{20}{c}}
{5 – 10}&{ – 1 – 0}&{2 – 5} \\
{9 – 10}&{ – 2 – 5}&{5 – 15} \\
{0 – 5}&{ – 1 + 5}&{ – 2 – 0}
\end{array}} \right]$ $ + \left[ {\begin{array}{*{20}{l}}
6&0&0 \\
0&6&0 \\
0&0&6
\end{array}} \right]$
$=\left[\begin{array}{ccc}-5 & -1 & -3 \\ -1 & -7 & -10 \\ -5 & 4 & -2\end{array}\right]+\left[\begin{array}{lll}6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6\end{array}\right]$
$=\left[\begin{array}{lll}-5+6 & -1+0 & -3+0 \\ -1+0 & -7+6 & -10+0 \\ -5+0 & 4+0 & -2+6\end{array}\right]$
$=\left[\begin{array}{ccc}1 & -1 & -3 \\ -1 & -1 & -10 \\ -5 & 4 & 4\end{array}\right]$