Find $a$ if the $17^{\text {th }}$ and $18^{\text {th }}$ terms of the expansion ${(2 + a)^{{\rm{50 }}}}$ are equal.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The $(r+1)^{\text {th }}$ term of the expansion $(x+y)^{n}$ is given by ${T_{r + 1}} = \,{\,^n}{C_r}{x^{n - r}}{y^r}$

For the $17^{\text {th }}$ term, we have, $r+1=17,$ i.e., $r=16$

Therefore,       ${T_{17}} = {T_{16 + 1}} = {\,^{50}}{C_{16}}{(2)^{50 - 16}}{a^{16}}$

$ = {\,^{50}}{C_{16}}{2^{34}}{a^{16}}$

Simlarly,      ${T_{18}} = {\,^{50}}{C_{17}}{2^{33}}{a^{17}}$

Given that    $T_{17}=T_{18}$

So   ${\,^{50}}{C_{16}}{(2)^{34}}{a^{16}} = {\,^{50}}{C_{17}}{(2)^{33}}{a^{17}}$

Therefore       $\frac{{{\,^{50}}{C_{16}} \cdot {2^{34}}}}{{{\,^{50}}{C_{17}} \cdot {2^{33}}}} = \frac{{{a^{17}}}}{{{a^{16}}}}$

i.e., $a = \frac{{{\,^{50}}{C_{16}} \times 2}}{{{\,^{50}}{C_{17}}}} = \frac{{50!}}{{16!34!}} \times \frac{{17! \cdot 33!}}{{50!}} \times 2 = 1$

Similar Questions

If the coefficient of the second, third and fourth terms in the expansion of ${(1 + x)^n}$ are in $A.P.$, then $n$ is equal to

  • [IIT 1994]

If $a^3 + b^6 = 2$, then the maximum value of the term independent of $x$ in the expansion of  $(ax^{\frac{1}{3}}+bx^{\frac{-1}{6}})^9$ is, where $(a > 0, b > 0)$

If $7^{th}$ term from beginning in the binomial expansion ${\left( {\frac{3}{{{{\left( {84} \right)}^{\frac{1}{3}}}}} + \sqrt 3 \ln \,x} \right)^9},\,x > 0$  is equal to $729$ , then possible value of $x$ is

The coefficient of $x^{18}$ in the product $(1+ x)(1- x)^{10} (1+ x + x^2 )^9$ is 

  • [JEE MAIN 2019]

Find the $4^{\text {th }}$ term in the expansion of $(x-2 y)^{12}$