Find $a$ if the $17^{\text {th }}$ and $18^{\text {th }}$ terms of the expansion ${(2 + a)^{{\rm{50 }}}}$ are equal.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The $(r+1)^{\text {th }}$ term of the expansion $(x+y)^{n}$ is given by ${T_{r + 1}} = \,{\,^n}{C_r}{x^{n - r}}{y^r}$

For the $17^{\text {th }}$ term, we have, $r+1=17,$ i.e., $r=16$

Therefore,       ${T_{17}} = {T_{16 + 1}} = {\,^{50}}{C_{16}}{(2)^{50 - 16}}{a^{16}}$

$ = {\,^{50}}{C_{16}}{2^{34}}{a^{16}}$

Simlarly,      ${T_{18}} = {\,^{50}}{C_{17}}{2^{33}}{a^{17}}$

Given that    $T_{17}=T_{18}$

So   ${\,^{50}}{C_{16}}{(2)^{34}}{a^{16}} = {\,^{50}}{C_{17}}{(2)^{33}}{a^{17}}$

Therefore       $\frac{{{\,^{50}}{C_{16}} \cdot {2^{34}}}}{{{\,^{50}}{C_{17}} \cdot {2^{33}}}} = \frac{{{a^{17}}}}{{{a^{16}}}}$

i.e., $a = \frac{{{\,^{50}}{C_{16}} \times 2}}{{{\,^{50}}{C_{17}}}} = \frac{{50!}}{{16!34!}} \times \frac{{17! \cdot 33!}}{{50!}} \times 2 = 1$

Similar Questions

The coefficient of ${x^4}$ in the expansion of ${(1 + x + {x^2} + {x^3})^n}$ is

If the coefficients of $x^7$ in $\left( ax ^2+\frac{1}{2 bx }\right)^{11}$ and $x ^{-7}$ in $\left(a x-\frac{1}{3 b x^2}\right)^{11}$ are equal, then

  • [JEE MAIN 2023]

Find $a$ if the coefficients of $x^{2}$ and $x^{3}$ in the expansion of $(3+a x)^{9}$ are equal.

Let ${\left( {x + 10} \right)^{50}} + {\left( {x - 10} \right)^{50}} = {a_0} + {a_1}x + {a_2}{x^2} + .... + {a_{50}}{x^{50}}$ , for $x \in R$; then $\frac{{{a_2}}}{{{a_0}}}$ is equal to

  • [JEE MAIN 2019]

Find the middle terms in the expansion of $\left(\frac{x}{3}+9 y\right)^{10}$