The value of $x$ in the expression ${[x + {x^{{{\log }_{10}}}}^{(x)}]^5}$, if the third term in the expansion is $10,00,000$

  • A

    $10$

  • B

    $11$

  • C

    $12$

  • D

    None of these

Similar Questions

If for positive integers $r > 1,n > 2$ the coefficient of the ${(3r)^{th}}$ and ${(r + 2)^{th}}$ powers of $x$ in the expansion of ${(1 + x)^{2n}}$ are equal, then

  • [IIT 1983]

Show that the coefficient of the middle term in the expansion of $(1+x)^{2 n}$ is equal to the sum of the coefficients of two middle terms in the expansion of $(1+x)^{2 n-1}$

If the coefficients of $x^{-2}$ and $x^{-4}$ in the expansion of ${\left( {{x^{\frac{1}{3}}} + \frac{1}{{2{x^{\frac{1}{3}}}}}} \right)^{18}}\,,\,\left( {x > 0} \right),$ are $m$ and $n$  respectively, then $\frac{m}{n}$ is equal to 

  • [JEE MAIN 2016]

If the coefficients of $a^{r-1}, a^{r}$ and $a^{r+1}$ in the expansion of $(1+a)^{n}$ are in arithmetic progression, prove that $n^{2}-n(4 r+1)+4 r^{2}-2=0$

Let $\mathrm{m}$ and $\mathrm{n}$ be the coefficients of seventh and thirteenth terms respectively in the expansion of $\left(\frac{1}{3} \mathrm{x}^{\frac{1}{3}}+\frac{1}{2 \mathrm{x}^{\frac{2}{3}}}\right)^{18}$. Then $\left(\frac{\mathrm{n}}{\mathrm{m}}\right)^{\frac{1}{3}}$ is :

  • [JEE MAIN 2024]