If the system of equations, $x + 2y -3z = 1, (k + 3) z = 3, (2k + 1)x + z = 0$ is inconsistent, then the value of $k$ is :-
$-3$
$1/2$
$0$
$2$
Statement $1$ : If the system of equations $x + ky + 3z = 0, 3x+ ky - 2z = 0, 2x + 3y - 4z = 0$ has a nontrivial solution, then the value of $k$ is $\frac{31}{2}$
Statement $2$ : A system of three homogeneous equations in three variables has a non trivial solution if the determinant of the coefficient matrix is zero.
If $A=\left[\begin{array}{ll}1 & 2 \\ 4 & 2\end{array}\right],$ then show that $|2 A|=4|A|$.
The number of solutions of the system of equations $2x + y - z = 7,\,\,x - 3y + 2z = 1,\,x + 4y - 3z = 5$ is
If $D_1$ and $D_2$ are two $3 \times 3$ diagonal matrices, then
Let $D _{ k }=\left|\begin{array}{ccc}1 & 2 k & 2 k -1 \\ n & n ^2+ n +2 & n ^2 \\ n & n ^2+ n & n ^2+ n +2\end{array}\right|$. If $\sum \limits_{ k =1}^n$ $D _{ k }=96$, then $n$ is equal to