જેમાં ત્રીજું પદ, પ્રથમ પદથી $9$ જેટલું વધારે હોય અને બીજું પદ ચોથા પદથી $18$ જેટલું વધારે હોય તેવી સમગુણોત્તર શ્રેણીનાં પ્રથમ ચાર પદ શોધો.
Let a be the first term and r be the common ratio of the $G.P.$
$a_{1}=a, a_{2}=a r, a_{3}=a r^{2}, a_{4}=a r^{3}$
By the given condition,
$a_{3}=a_{1}+9 \Rightarrow a r^{2}=a+9$ ..........$(1)$
$a_{4}=a_{4}+18 \Rightarrow a r=a r^{3}+18$ ..........$(2)$
From $(1)$ and $(2),$ we obtain
$a\left(r^{2}-1\right)=9 $ ..........$(3)$
$a r\left(1-r^{2}\right)=18$ ...........$(4)$
Dividing $(4)$ by $(3),$ we obtain
$\frac{\operatorname{ar}\left(1-r^{2}\right)}{a\left(r^{2}-1\right)}=\frac{18}{9}$
$\Rightarrow-r=2$
$\Rightarrow r=-2$
Substituting the value of $r$ in $(1),$ we obtain
$4 a=a+9$
$\Rightarrow 3 a=9$
$\therefore a=3$
Thus, the first four numbers of the $G.P.$ are $3,3(-2), 3(-2)^{2},$ and $3(-2)^{3}$
i.e., $3,-6,12$ and $-24$
જો $x,\;y,\;z$ એ સમગુણોતર શ્નેણીમાંં હોય અને ${a^x} = {b^y} = {c^z}$ તે
$\sum\limits_{k = 1}^{11} {\left( {2 + {3^k}} \right)} $ ની કિંમત શોધો.
જો $\frac{6}{3^{12}}+\frac{10}{3^{11}}+\frac{20}{3^{10}}+\frac{40}{3^{9}}+\ldots . .+\frac{10240}{3}=2^{ n } \cdot m$, કે જ્યાં $m$ એ અયુગ્મ છે તો $m . n$ ની કિમંત મેળવો.
જો સમગુણોત્તર શ્રેણીના $n$ પદોનો સરવાળો $S_n$ હોય, જેનું પ્રથમ $a$ પદ અને સામાન્ય ગુણોતર $r$ તો $S_1 + S_3 + S_5 + … + S_{2n-1}$ નો સરવાળો કેટલો થાય ?
અનંત સમગુણોત્તર શ્રેણીનું પ્રથમ પદ એ તેના પછીના પદોના સરવાળા કરતાં બમણું હોય, તો સામાન્ય ગુણોત્તર કેટલો હોય ?