$\sum\limits_{k = 1}^{11} {\left( {2 + {3^k}} \right)} $ ની કિંમત શોધો.
$\sum\limits_{k = 1}^{11} {\left( {2 + {3^k}} \right) = } \sum\limits_{k = 1}^{11} {\left( 2 \right) + } \sum\limits_{k = 1}^{11} {\left( {{3^k}} \right) = 22 + } \sum\limits_{k = 1}^{11} {{3^k}} $ .........$(1)$
$\sum\limits_{k = 1}^{11} {{3^k} = {3^1} + {3^2} + {3^3} + ........ + {3^{11}}} $
The terms of this sequence $3,3^{2}, 3^{3} \ldots \ldots$ forms a $G.P.$
$S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}$
$\Rightarrow S_{n}=\frac{3\left[(3)^{11}-1\right]}{3-1}$
$\Rightarrow S_{n}=\frac{3}{2}\left(3^{11}-1\right)$
$\therefore \sum\limits_{k = 1}^{11} {{3^k}} = \frac{3}{2}\left( {{3^{11}} - 1} \right)$
Substituting this value in equation $(1),$ we obtain
$\sum\limits_{k = 1}^{11} {\left( {2 + {3^k}} \right) = 22 + \frac{3}{2}\left( {{3^{11}} - 1} \right)} $
જો ${s_n} = 1 + \frac{1}{2} + \frac{1}{{{2^2}}} + ........ + \frac{1}{{{2^{n - 1}}}}$ ,હોય તો $n$ ની ન્યૂનતમ કિમત મેળવો કે જેથી $2 - {s_n} < \frac{1}{{100}}$ થાય
એક માણસ તેના ચાર મિત્રોને પત્ર લખે છે. તે દરેકને સૂચના આપે છે કે આ પત્ર તેમના અન્ય ચાર મિત્રોને મોકલે અને તેમને પણ આ જ પ્રમાણેની સાંકળ આગળ વધારવાની છે. માની લઈએ કે આ સાંકળ તૂટતી નથી અને દરેક પત્ર મોકલવાનો ખર્ચ $50$ પૈસા આવે છે, તો $8$ મી વખત પત્ર મોકલવાનો ખર્ચ શોધો.
જો $a_{1}, a_{2}, a_{3}, \ldots$ એ સમગુણોતર શ્રેણીમાં છે કે જેથી $a_{1}<0$ ; $a_{1}+a_{2}=4$ અને $a_{3}+a_{4}=16.$ જો $\sum\limits_{i=1}^{9} a_{i}=4 \lambda,$ તો $\lambda$ મેળવો.
જો $x, y, z$ સમગુણોત્તર શ્રેણીમાં અને $a^x = b^y = c^z$ હોય, તો . . . . . .
જો સમગુણોતર શ્રેણીના અનંત પદનો સરવાળો $20$ હોય તથા તેમના વર્ગોનો સરવાળો $100$ હોય તો સમગુણોતર શ્રેણીનો ગુણોતર મેળવો.