गुणोत्तर श्रेणी $\frac{5}{2}, \frac{5}{4}, \frac{5}{8}, \ldots$ का $20$ वाँ तथा $n$ वाँ पद ज्ञात कीजिए।
The given $G.P.$ is $\frac{5}{2}, \frac{5}{4}, \frac{5}{8}, \ldots .$
Here, $a=$ First term $=\frac{5}{2}$
$r=$ Common ratio $=\frac{5 / 4}{5 / 2}=\frac{1}{2}$
$a_{20}=a r^{20-1}=\frac{5}{2}\left(\frac{1}{2}\right)^{19}=\frac{5}{(2)(2)^{19}}=\frac{5}{(2)^{20}}$
$a_{n}=a r^{n-1}=\frac{5}{2}\left(\frac{1}{2}\right)^{n-1}=\frac{5}{(2)(2)^{n-1}}=\frac{5}{(2)^{n}}$
माना धनात्मक पदों की एक गुणोत्तर श्रेढ़ी का $n$ वां पद $a _{ n }$ है। यदि $\sum_{n=1}^{100} a_{2 n+1}=200$ तथा $\sum_{n=1}^{100} a_{2 n}=100$, तो $\sum_{ n =1}^{200} a _{ n }$ बराबर है
यदि $a,b,c$ समान्तर श्रेणी में हों, तो ${2^{ax + 1}},{2^{bx + 1}},\,{2^{cx + 1}},x \ne 0$ होंगे
किसी गुणोत्तर श्रेणी की $3$ संख्याओं का योग $38$ तथा गुणनफल $1728$ है तब मध्य संख्या है
निम्नाकित चित्र में दर्शाए अनुसार, मान लें कि $S_1$ ऐसे वर्गों के क्षेत्रफल का योग है जिसकी भुजाएँ नियामक अक्षों के समान्तर है. मान लें कि नत $(slanted)$ बर्गों के क्षेत्रफलों का योग $S_2$ है. तब $S_1 / S_2$ का मान होगा
किसी गुणोत्तर श्रेणी में $S , n$ पदों का योग, $P$ उनका गुणनफल तथा $R$ उनके व्युत्क्रमों का योग हो तो सिद्ध कीजिए कि $P ^{2} R ^{n}= S ^{n}$.