$(x+2 y)^{9}$ के प्रसार में $x^{6} y^{3}$ का गुणांक ज्ञात कीजिए।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Suppose $x^{6} y^{3}$ occurs in the $(r+1)^{\text {th }}$ term of the expansion $(x+2 y)^{9}$

Now     ${T_{r + 1}} = {\,^9}{C_r}{x^{9 - r}}{(2y)^r} = {\,^9}{C_r}{2^r} \cdot {x^{9 - r}} \cdot {y^r}$

Comparing the indices of $x$ as well as $y$ in $x^{6} y^{3}$ and in $T_{r+1},$ we get $r=3$

Thus, the coefficient of $x^{6} y^{3}$ is

${\,^9}{C_3}{2^3} = \frac{{9!}}{{3!6!}} \cdot {2^3} = \frac{{9.8.7}}{{3.2}} \cdot {2^3} = 672$

Similar Questions

यदि $\left(\mathrm{ax}^3+\frac{1}{\mathrm{bx}^{\frac{1}{3}}}\right)^{15}$ के प्रसार में $\mathrm{x}^{15}$ का गुणांक $\left(\mathrm{ax}^{\frac{1}{3}}-\frac{1}{\mathrm{bx}^3}\right)^{15}$ के प्रसार, में $\mathrm{x}^{-15}$ के गुणांक के बराबर है, जहाँ $a$ तथा $b$ धनात्मक संख्याएँ है, तो ऐसे प्रत्येक क्रमित युग्म $(\mathrm{a}, \mathrm{b})$ के लिए :

  • [JEE MAIN 2023]

यदि ${\left( {x - \frac{1}{{2x}}} \right)^n}$ के विस्तार में तीसरे तथा चौथे पदों के गुणांकों का अनुपात  $1 : 2$  हो, तो $n$ का मान होगा  

यदि  ${(1 + x)^{14}}$ के विस्तार में ${T_r},\,{T_{r + 1}},\,{T_{r + 2}}$ के गुणांक समांतर श्रेणी में हों, तो $r = $

${(\sqrt x  - \sqrt y )^{17}}$ के विस्तार में $16$  वाँ  पद होगा

$\left(2 x^3-\frac{1}{3 x^2}\right)^5$ के प्रसार में $\mathrm{x}^5$ का गुणांक है

  • [JEE MAIN 2023]