7.Binomial Theorem
medium

$(x+2 y)^{9}$ के प्रसार में $x^{6} y^{3}$ का गुणांक ज्ञात कीजिए।

A

$672$

B

$672$

C

$672$

D

$672$

Solution

Suppose $x^{6} y^{3}$ occurs in the $(r+1)^{\text {th }}$ term of the expansion $(x+2 y)^{9}$

Now     ${T_{r + 1}} = {\,^9}{C_r}{x^{9 – r}}{(2y)^r} = {\,^9}{C_r}{2^r} \cdot {x^{9 – r}} \cdot {y^r}$

Comparing the indices of $x$ as well as $y$ in $x^{6} y^{3}$ and in $T_{r+1},$ we get $r=3$

Thus, the coefficient of $x^{6} y^{3}$ is

${\,^9}{C_3}{2^3} = \frac{{9!}}{{3!6!}} \cdot {2^3} = \frac{{9.8.7}}{{3.2}} \cdot {2^3} = 672$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.