For a positive integer $n,\left(1+\frac{1}{x}\right)^{n}$ is expanded in increasing powers of $x$. If three consecutive coefficients in this expansion are in the ratio, $2: 5: 12,$ then $n$ is equal to
$115$
$128$
$138$
$118$
If the sum of the coefficients in the expansion of $(x - 2y + 3 z)^n,$ $n \in N$ is $128$ then the greatest coefficie nt in the exp ansion of $(1 + x)^n$ is
In the binomial expansion of ${(a - b)^n},\,n \ge 5,$ the sum of the $5^{th}$ and $6^{th}$ terms is zero. Then $\frac{a}{b}$ is equal to
${6^{th}}$ term in expansion of ${\left( {2{x^2} - \frac{1}{{3{x^2}}}} \right)^{10}}$ is
If $A$ and $B$ are the coefficients of ${x^n}$ in the expansions of ${(1 + x)^{2n}}$ and ${(1 + x)^{2n - 1}}$ respectively, then
If $a^3 + b^6 = 2$, then the maximum value of the term independent of $x$ in the expansion of $(ax^{\frac{1}{3}}+bx^{\frac{-1}{6}})^9$ is, where $(a > 0, b > 0)$