7.Binomial Theorem
medium

For a positive integer $n,\left(1+\frac{1}{x}\right)^{n}$ is expanded in increasing powers of $x$. If three consecutive coefficients in this expansion are in the ratio, $2: 5: 12,$ then $n$ is equal to

A

$115$

B

$128$

C

$138$

D

$118$

(JEE MAIN-2020)

Solution

${ }^{ n } C _{ r -1}:{ }^{ n } C _{ r }:{ }^{ n } C _{ r +1}=2: 5: 12$

Now $\frac{{ }^{n} C_{r-1}}{{ }^{n} C_{r}}=\frac{2}{5}$

$\Rightarrow 7 r=2 n+2$

$\frac{{ }^{n} C_{r}}{{ }^{n} C_{r+1}}=\frac{5}{12}$

$\Rightarrow 17 r =5 n -12$

On solving (1)$\&(2)$

$\Rightarrow n =118$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.