આપેલ ઉપવલય માટે નાભિના યામ, શિરોબિંદુઓ તથા પ્રધાન અક્ષ તથા ગૌણ અક્ષની લંબાઈ, ઉત્કેન્દ્રતા અને નાભિલંબની લંબાઈ શોધોઃ
$16 x^{2}+y^{2}=16$
The given equation is $16 x^{2}+y^{2}=16$
It can be written as
$16 x^{2}+y^{2}=16$
Or, $\frac{x^{2}}{1}+\frac{y^{2}}{16}=1$
Or, $\frac{ x ^{2}}{1^{2}}+\frac{y^{2}}{4^{2}}=1$ ........ $(1)$
Here, the denominator of $\frac{ x ^{2}}{4^{2}}$ is greater than the denominator of $\frac{ x ^{2}}{1^{2}}$.
Therefore, the major axis is along the $y-$ axis, while the minor axis is along the $x-$ axis.
On comparing equation $(1)$ with $\frac{ x ^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1,$ we obtain $b =1$ and $a =4$
$\therefore c=\sqrt{a^{2}-b^{2}}=\sqrt{16-1}=\sqrt{15}$
Therefore,
The coordinates of the foci are $(0, \,\pm \sqrt{15})$
The coordinates of the vertices are $(0,\,±4)$
Length of major axis $=2 a=8$
Length of minor axis $=2 b =2$
Eccentricity, $e=\frac{c}{a}=\frac{\sqrt{15}}{4}$
Length of latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \times 1}{4}=\frac{1}{2}$
ઉપવલય ${x^2} + 2{y^2} = 2$ ના બહારના બિંદુથી ઉપવલય પર દોરવામાં આવેલ સ્પર્શકોએ અક્ષો પર કપાયેલ અંત:ખંડના મધ્યબિંદુના બિંદુપથનું સમીકરણ મેળવો.
$\frac{{{x^2}}}{{{a^2}}}\,\, + \;\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1\,\,\left( {a\,\, < \,\,b} \right)$ ની બે નાભિઓ $S$ અને $S'$ હોય અને જો ઉપવલય અને ઉપવલય પરનું બિંદુ $P\ (x_1, y_1)$ હોય તો $SP + S'P = ……$
ઉપવલય $\frac{{{x^2}}}{{16}}\,\, + \;\,\frac{{{y^2}}}{9}\, = \,\,1$ની નાભિઓમાંથી પસાર થતું અને $(0, 3)$ કેન્દ્ર વાળા વર્તૂળની ત્રિજ્યા....
જેની પ્રધાનઅક્ષ $x -$ અક્ષ અને કેન્દ્ર ઉંગમબિંદુ હોય તેવા ઉપવલયના નાભીલંબની લંબાઈ $8$ છે જો બંને નાભીઓ વચ્ચેનું અંતર તેની ગૌણઅક્ષની લંબાઈ જેટલું હોય તો નીચેનામાંથી ક્યું બિંદુ ઉપવલય પર આવેલ નથી ?
ઉપવલય $2x^2 + 5y^2 = 20$ ની સાપેક્ષે બિંદુ $(4, -3)$ નું સ્થાન :