આપેલ ઉપવલય માટે નાભિના યામ, શિરોબિંદુઓ તથા પ્રધાન અક્ષ તથા ગૌણ અક્ષની લંબાઈ, ઉત્કેન્દ્રતા અને નાભિલંબની લંબાઈ શોધોઃ

$16 x^{2}+y^{2}=16$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The given equation is $16 x^{2}+y^{2}=16$

It can be written as

$16 x^{2}+y^{2}=16$

Or, $\frac{x^{2}}{1}+\frac{y^{2}}{16}=1$

Or,  $\frac{ x ^{2}}{1^{2}}+\frac{y^{2}}{4^{2}}=1$    ........ $(1)$

Here, the denominator of $\frac{ x ^{2}}{4^{2}}$ is greater than the denominator of $\frac{ x ^{2}}{1^{2}}$. 

Therefore, the major axis is along the $y-$ axis, while the minor axis is along the $x-$ axis.

On comparing equation $(1)$ with $\frac{ x ^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1,$ we obtain $b =1$ and $a =4$

$\therefore c=\sqrt{a^{2}-b^{2}}=\sqrt{16-1}=\sqrt{15}$

Therefore,

The coordinates of the foci are $(0, \,\pm \sqrt{15})$

The coordinates of the vertices are $(0,\,±4)$

Length of major axis $=2 a=8$

Length of minor axis $=2 b =2$

Eccentricity, $e=\frac{c}{a}=\frac{\sqrt{15}}{4}$

Length of latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \times 1}{4}=\frac{1}{2}$

Similar Questions

બિંદુ $P\ (3, 4)$ માંથી ઉપવલય $\frac{{{x^2}}}{9}\,\, + \;\,\frac{{{y^2}}}{4}\,\, = \,\,1$પર દોરેલા સ્પર્શકો ઉપવલયને બિંદુઓ $A$ અને $B$ આગળ સ્પર્શ છે.$A$ અને $B$ ના યામ મેળવો.

આપેલ શરતોનું સમાધાન કરતા ઉપવલયનું સમીકરણ શોધોઃ  પ્રધાન અક્ષ $x-$ અક્ષ પર હોય અને બિંદુઓ $(4, 3)$ અને $(6, 2)$ માંથી પસાર થાય

જેના પ્રધાન અક્ષની લંબાઈ $20$ હોય અને નાભિઓ $(0,\,\pm 5)$ હોય તેવા ઉપવલયનું સમીકરણ મેળવો. 

ઉપવલય $4x^2 + 9y^2 = 36$ પરના ક્યાં બિંદુ આગળ આંતરેલ અભિલંબ રેખા $4x -2y-5 = 0$ ને સમાંતર થાય ?

  • [JEE MAIN 2013]

બિંદુ $P$ એવી રીતે ખસે છે કે જેથી $(ae, 0)$ અને $(-ae, 0)$ બિંદુથી તેના અંતરનો સરવાળો હંમેશા $2a$ રહે છે. તો $P$ નો બિંદુપથ શોધો.(જ્યાં $0 < e < 1$).