Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the latus rectum of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$
since denominator of $\frac{x^{2}}{25}$ is larger than the denominator of $\frac{y^{2}}{9},$ the major axis is along the $x-$ axis.
Comparing the given equation with $\frac{x^{2}}{a^{2}}$ $+\frac{y^{2}}{b^{2}}$ $=1,$ we get $a=5$ and $b=3$ . Also $c=\sqrt{a^{2}-b^{2}}=\sqrt{25-9}=4$
Therefore, the coordinates of the foci are $(-4,\,0)$ and $(4,\,0),$ vertices are $(-5,\,0)$ and $(5,\,0).$ Length of the major axis is $10$ units length of the minor axis $2b$ is $6$ units and the eccentricity is $\frac{4}{5}$ and latus rectum is $\frac{2 b^{2}}{a}=\frac{18}{5}$.
Extremities of the latera recta of the ellipses $\frac{{{x^2}}}{{{a^2}}}\,\, + \,\,\frac{{{y^2}}}{{{b^2}}}\, = \,1\,$ $(a > b)$ having a given major axis $2a$ lies on
The acute angle between the pair of tangents drawn to the ellipse $2 x^{2}+3 y^{2}=5$ from the point $(1,3)$ is.
Tangent is drawn to ellipse $\frac{{{x^2}}}{{27}} + {y^2} = 1\,at\,(3\sqrt 3 \cos \theta ,\sin \theta )$ where $\theta \in (0, \pi /2)$ . Then the value of $\theta$ such that sum of intercepts on axes made by this tangent is minimum, is
If $PQ$ is a double ordinate of hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ such that $OPQ$ is an equilateral triangle, $O$ being the centre of the hyperbola. Then the eccentricity $e$ of the hyperbola satisfies
Point $'O' $ is the centre of the ellipse with major axis $AB$ $ \&$ minor axis $CD$. Point $F$ is one focus of the ellipse. If $OF = 6 $ $ \&$ the diameter of the inscribed circle of triangle $OCF$ is $2, $ then the product $ (AB)\,(CD) $ is equal to