Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the latus rectum of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$
since denominator of $\frac{x^{2}}{25}$ is larger than the denominator of $\frac{y^{2}}{9},$ the major axis is along the $x-$ axis.
Comparing the given equation with $\frac{x^{2}}{a^{2}}$ $+\frac{y^{2}}{b^{2}}$ $=1,$ we get $a=5$ and $b=3$ . Also $c=\sqrt{a^{2}-b^{2}}=\sqrt{25-9}=4$
Therefore, the coordinates of the foci are $(-4,\,0)$ and $(4,\,0),$ vertices are $(-5,\,0)$ and $(5,\,0).$ Length of the major axis is $10$ units length of the minor axis $2b$ is $6$ units and the eccentricity is $\frac{4}{5}$ and latus rectum is $\frac{2 b^{2}}{a}=\frac{18}{5}$.
An arch is in the form of a semi-cllipse. It is $8 \,m$ wide and $2 \,m$ high at the centre. Find the height of the arch at a point $1.5\, m$ from one end.
If the length of the major axis of an ellipse is three times the length of its minor axis, then its eccentricity is
What will be the equation of that chord of ellipse $\frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{9} = 1$ which passes from the point $(2,1)$ and bisected on the point
If the eccentricity of an ellipse be $5/8$ and the distance between its foci be $10$, then its latus rectum is
The acute angle between the pair of tangents drawn to the ellipse $2 x^{2}+3 y^{2}=5$ from the point $(1,3)$ is.