જો ઉપવલય $25 x^{2}+4 y^{2}=1$ પરના બિંદુ $(\alpha, \beta)$ માંથી પરવલય $y^{2}=4 x$ ને દોરેલ બે સ્પર્શકો એવા છે કે જેથી એક સ્પર્શકનો ઢાળ, બીજો સ્પર્શકના ઢાળ કરતાં ચાર ઘણો હોય, તો $(10 \alpha+5)^{2}+\left(16 \beta^{2}+50\right)^{2}$ નું મુલ્ય...................... છે.
$7982$
$2898$
$2929$
$3289$
અહી $\theta$ એ ઉપવલય $\frac{x^{2}}{9}+\frac{y^{2}}{1}=1$ અને વર્તુળ $x^{2}+y^{2}=3$ નાં પ્રથમ ચરણનાં છેદબિંદુ આગળનાં સ્પર્શકો વચ્ચેનો ખૂણો છે તો $\tan \theta$ ની કિમંત મેળવો.
જો ઉપવલયની બે નાભિઓ વચ્ચેનું અંતર બરાબર તેની પ્રધાન અક્ષ હોય, તો ઉપવલયની ઉત્કેન્દ્રતા =
ઉપવલય $x^2 + 4y^2 = 4$ એ યામાક્ષો સાથે જોડાયેલા લંબચોરસમાં આવેલું છે, તો ઉપવલયનું સમીકરણ મેળવો કે જે આપેલ લંબચોરચને સમાવે.
ધારો કે $E$ એ ઉપવલય $\frac{{{x^2}}}{9}\,\, + \;\,\frac{{{y^2}}}{4}\,\, = \,\,1$અને $C$ એ વર્તૂળ $x^2 + y^2 = 9$ છે. $P$ અને $Q$ બરાબર અનુક્રમે બિંદુઓ $(1, 2)$ અને $(2, 1)$ લઈએ, તો
ઉપવલય $9x^2 + 5y^2 - 30y = 0 $ ની ઉત્કેન્દ્રતા ....