આપેલ ઉપવલય માટે નાભિના યામ, શિરોબિંદુઓ તથા પ્રધાન અક્ષ તથા ગૌણ અક્ષની લંબાઈ, ઉત્કેન્દ્રતા અને નાભિલંબની લંબાઈ શોધોઃ
$\frac{x^{2}}{49}+\frac{y^{2}}{36}=1$
The given equation is $\frac{x^2}{49}+\frac{y^{2}}{36}=1$ or $\frac{x^2} {7^{2}}+\frac{y^{2}}{6^{2}}=1$
Here, the denominator of $\frac{x^{2}}{49}$ is greater than the denominator of $\frac{y^{2}}{36}$
Therefore, the major axis is along the $x-$ axis, while the minor axis is along the $y-$ axis.
On comparing the given equation with $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1,$ we obtain $a=7$ and $b=6$
$\therefore c=\sqrt{a^{2}-b^{2}}=\sqrt{49-36}=\sqrt{13}$
Therefore,
The coordinates of the foci are $(\pm \,\sqrt{13}, 0)$
The coordinates of the vertices are $(±7,\,0)$
Length of major axis $=2 a =14$
Length of minor axis $=2 b =12$
Eccentricity, $e=\frac{c}{a}=\frac{\sqrt{13}}{7}$
Length of latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \times 36}{7}=\frac{72}{7}$
આપેલ શરતોનું સમાધાન કરતા ઉપવલયનું સમીકરણ શોધોઃ પ્રધાન અક્ષનાં અંત્યબિંદુઓ $(±3,\,0)$, ગૌણ અક્ષનાં અંત્યબિંદુઓ $(0,\,±2)$
જો $a$ અને $c$ એ વાસ્તવિક સંખ્યાઓ છે અને ઉપવલય $\frac{{{x^2}}}{{4{c^2}}} + \frac{{{y^2}}}{{{c^2}}} = 1$ ના વર્તુળ $x^2 + y^2 = 9a^2$ માં ચાર ભિન્ન બિંદુઓ સામાન્ય હોય તો ....
જેનું કેન્દ્ર ઊગમબિંદુ આગળ છે એવા ઉપવલયની ઉત્કેન્દ્રતા $\frac{1}{2}$ છે. જો તેની એક નિયામીકા $x = - 4$ હોય,તો $\left( {1,\frac{3}{2}} \right)$ આગળ તેના અભિલંબનું સમીકરણ . . . છે. .
ઉપવલયની બે નાભિ વચ્ચેનું અંતર $6$ તથા તેની ગૈાણ અક્ષની લંબાઇ $8 $ હોય તો $e$ મેળવો.