दीर्घवृत्त में नाभियों और शीर्षों के निर्देशांक, दीर्घ और लघु अक्ष की लंबाइयाँ, उत्केंद्रता तथा नाभिलंब जीवा की लंबाई ज्ञात कीजिए
$\frac{x^{2}}{100}+\frac{y^{2}}{400}=1$
The given equation is $\frac{x^{2}}{100}+\frac{y^{2}}{400}=1$ or $\frac{x^{2}}{10^{2}}+\frac{y^{2}}{20^{2}}=1$
Here, the denominator of is greater than the denominator of $\frac{x^{2}}{100}$.
Therefore, the major axis is along the $y-$ axis, while the minor axis is along the $x-$ axis.
On comparing the given equation with, $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1$ we obtain $b=10$ and $a=20$
$\therefore c=\sqrt{a^{2}-b^{2}}=\sqrt{400-100}=\sqrt{300}=10 \sqrt{3}$
Therefore,
The coordinates of the foci are $(0,\, \pm 10 \sqrt{3})$
The coordinates of the vertices are $(0,\,±20)$
Length of major axis $=2 a =40$
Length of minor axis $=2 b =20$
Eccentricity, $e=\frac{c}{a}=\frac{10 \sqrt{3}}{20}=\frac{\sqrt{3}}{2}$
Length of latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \times 100}{20}=10$
रेखा $y = x +1$, दीर्घवृत $\frac{ x ^2}{4}+\frac{ y ^2}{2}=1$ को दो बिन्दुओं $P$ तथा $Q$ पर मिलती है। यदि $PQ$ व्यास वाले वृत की त्रिज्या $r$ हो तो $(3 r )^2$ बराबर होगा-
एक दीर्घवृत्त, जिसका लघु एवं वृहद अक्ष निर्देशक अक्षों $(coordinate\,axes)$ के समान्तर है, $(0,0),(1,0)$ एवं $(0,2)$ से गुजरता है। इसकी एक नाभि $y$-अक्ष पर है। दीर्घवृत्त का उत्केन्द्रता है ?
यदि रेखा $y = 2x + c$ दीर्घवृत्त $\frac{{{x^2}}}{8} + \frac{{{y^2}}}{4} = 1$ को स्पर्श करती है, तो $c = $
दीर्घवृत्त $4{x^2} + 9{y^2} + 8x + 36y + 4 = 0$ की उत्केन्द्रता है
दीर्घवृत्त $9{x^2} + 5{y^2} - 30y = 0$ के दीर्घ अक्ष के सिरों पर खींची गई स्पर्श रेखाओं के समीकरण हैं