Gujarati
10-2. Parabola, Ellipse, Hyperbola
normal

दिये गए दीर्घवृत्त के दोनों शीर्ष तथा नाभि समान दूरी पर स्थित हैं। यदि ऐसे दीर्घवृत्त का अर्ध-लघु अक्ष $2 \sqrt{2}$ है तो अर्ध-दीर्घ अक्ष का मान होगा:

A

$4$

B

$2 \sqrt{3}$

C

$\sqrt{10}$

D

$3$

(KVPY-2014)

Solution

(d)

Given, in cllipse

$A^{\prime} S^{\prime}=S S^{\prime}=S A$

$\therefore \quad S S^{\prime} =\frac{1}{3} A A^{\prime}$

$\Rightarrow \quad 2 a e =\frac{1}{3}(2 a)$

$\Rightarrow \quad =\frac{1}{3}$

$\text { Also given, } b =2 \sqrt{2}$

$\Rightarrow \quad \frac{1}{9} =1-\frac{b^2}{a^2}$

$\Rightarrow \quad \frac{8}{a^2} =1-\frac{1}{9}=\frac{8}{9}$

$\Rightarrow \quad a^2 =9$

$\therefore \quad a =3$

Standard 11
Mathematics

Similar Questions

माना कि $F_1\left(x_1, 0\right)$ और $F_2\left(x_2, 0\right)$ (जिसमें $x_1<0, x_2>0$ ) दीर्घवृत्त (ellipse) $\frac{x_2^2}{9}+\frac{y^2}{8}=1$ की नाभियाँ (Foci) हैं। माना कि एक परवलय (parabola) जिसका शीर्ष (vertex) मूलबिन्दु (origin) पर और नाभि (focus) $F_2$ पर है, दीर्घवृत्त को प्रथम चतुर्थांश (first quadrant) में $M$ पर और चतुर्थ चतुर्थांश (fourth quadrant) में $N$ पर प्रतिच्छेदित करता है।

($1$) त्रिभुज $F_1 M N$ का लंबकेन्द्र (orthocentre) है

$(A)$ $\left(-\frac{9}{10}, 0\right)$ $(B)$ $\left(\frac{2}{3}, 0\right)$ $(C)$ $\left(\frac{9}{10}, 0\right)$ $(D)$ $\left(\frac{2}{3}, \sqrt{6}\right).$

($2$) यदि दीर्घवृत्त के बिन्दुओं $M$ और $N$ पर स्परिखाएँ (tangents) $R$ पर मिलती हैं और परवलय के बिन्दु $M$ पर अभिलंब $x$-अक्ष को $Q$ पर मिलता है, तब त्रिभुज $M Q R$ के क्षेत्रफल और चतुर्भुज (quadrilateral) $M F_1 N F_2$ के क्षेत्रफल का अनुपात (ratio) है

$(A)$ $3: 4$  $(B)$ $4: 5$  $(C)$ $\sec 5: 8$  $(D)$ $2: 3$

दिये गए सवाल का जवाब दीजिये ($1$) और ($2$)

normal
(IIT-2016)

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.