दीर्घवृत्त $\frac{{{{(x + y - 2)}^2}}}{9} + \frac{{{{(x - y)}^2}}}{{16}} = 1$ का केन्द्र है
$(0, 0)$
$(1, 1)$
$(1, 0)$
$(0, 1)$
दीर्घवृत्त $3{x^2} + 2{y^2} = 5$ पर बिन्दु $(1, 2)$ से खींची गयीं स्पर्श रेखाओं के बीच कोण है
यदि दीर्घवृत्त $\frac{{{x^2}}}{{14}} + \frac{{{y^2}}}{5} = 1$ के बिन्दु $P(\theta )$ पर खींचे गये अभिलम्ब इसे पुन: $Q(2\theta )$ पर प्रतिच्छेद करते हैं, तो $\cos \theta $ बराबर है
दीर्घवृत्त, जिसका केन्द्र मूलबिन्दु पर है, की उत्केन्द्रता $\frac{1}{2}$ है। यदि एक नियता $x = 4$ है तब दीर्घवृत्त का समीकरण है
दीर्घवृत्त $2{x^2} + 5{y^2} = 20$ के सापेक्ष बिन्दु $(4, -3)$ की स्थिति है
किसी दीर्घवृत्त का केन्द्र $C$ एवं $PN$ कोई कोटि है, $A$, $A'$ दीर्घवृत्त के सिरे हैं तो $\frac{{P{N^2}}}{{AN\;.\;A'N}}$ का मान होगा