दीर्घवृत्त $9 x^{2}+4 y^{2}=36$ के नाभियों और शीर्षों के निर्देशांक, दीर्घ और लघु अक्ष की लंबाइयाँ, और उत्केंद्रता ज्ञात कीजिए।
The given equation of the ellipse can be written in standard form as
$\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$
since the denominator of $\frac{y^{2}}{9}$ is larger than the denominator of $\frac{x^{2}}{4},$ the major axis is along the $y-$ axis. Comparing the given equation with the standard equation
$\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1$, we have $b=2$ and $a=3$
Also $c=\sqrt{a^{2}-b^{2}}$ $=\sqrt{9-4}=\sqrt{5}$
and $e=\frac{c}{a}=\frac{\sqrt{5}}{3}$
Hence the foci are $(0,\, \sqrt{5})$ and $(0,\,-\sqrt{5}),$ vertices are $(0,\,3)$ and $(0,\,-3),$ length of the major axis is $6$ units, the length of the minor axis is $4$ units and the eccentricity of the cllipse is $\frac{\sqrt{5}}{3}$.
दीर्घवृत्त में नाभियों और शीर्षों के निर्देशांक, दीर्घ और लघु अक्ष की लंबाइयाँ, उत्केंद्रता तथा नाभिलंब जीवा की लंबाई ज्ञात कीजिए
$\frac{x^{2}}{16}+\frac {y^2} {9}=1$
उस दीर्घवृत्त का समीकरण ज्ञात कीजिए, जिसकी नाभियों के निर्देशांक $(±5,0)$ तथा शीर्षों के निर्देशांक $(±13,0)$ हैं।
माना $E$ एक दीर्घवत्त है जिसके अक्ष, निर्देशांक अक्षों के समांतर हैं। इसका केन्द्र $(3,-4)$ पर, एक नाभि $(4,-4)$ पर तथा एक शीर्ष $(5,-4)$ पर हैं। यदि $mx - y =4, m >0$ दीर्घवत्त $E$ की एक स्पर्श रेखा है, तो $5 m ^{2}$ का मान बराबर है ......... |
वक्र $16{x^2} + 25{y^2} = 400$ की नाभियाँ हैं
दीर्घवृत्त $5{x^2} + 9{y^2} = 45$ के नाभिलम्ब की लम्बाई है