ऐसी दो सरल रेखाओं (straight lines) पर विचार कीजिये, जिनमें से प्रत्येक, वृत्त (circle) $x^2+y^2=\frac{1}{2}$ और परवलय (parabola) $y^2=4 x$ दोनों पर ही स्पर्शी (tangent) है। माना कि ये रेखाएं बिंदु $Q$ पर प्रतिच्छेद (intersect) करती हैं। एक ऐसे दीर्घवृत्त (ellipse) पर विचार कीजिये जिसका केंद्र (centre) मूलर्बिंदु (origin) $O(0,0)$ पर है और जिसका अर्ध-दीर्घाक्ष (semi-major axis) $O Q$ है। यदि इस दीर्घवृत के लघु अक्ष (minor axis) की लम्बाई $\sqrt{2}$ है, तब निम्नलिखित में से कौन सा (से) कथन सत्य है (हैं)?
$(A)$ दीर्घवृत्त की उत्केन्द्रता (eccentricity) $\frac{1}{\sqrt{2}}$ है और नाभिलम्ब जीवा (latus rectum) की लम्बाई 1 है
$(B)$ दीर्घवृत्त की उत्केन्द्रता $\frac{1}{2}$ है और नाभिलम्ब जीवा की लम्बाई $\frac{1}{2}$ है
$(C)$ रेखाओं $x=\frac{1}{\sqrt{2}}$ व $x=1$ के बीच दीर्घवृत्त द्वारा परिबद्ध (bounded) क्षेत्र (region) का क्षेत्रफल (area) $\frac{1}{4 \sqrt{2}}(\pi-2)$ है
$(D)$ रेखाओं $x=\frac{1}{\sqrt{2}}$ व $x=1$ के बीच दीर्घवृत्त द्वारा परिबद्ध क्षेत्र का क्षेत्रफल $\frac{1}{16}(\pi-2)$ है