10-2. Parabola, Ellipse, Hyperbola
normal

Let $H : \frac{ x ^{2}}{ a ^{2}}-\frac{y^{2}}{ b ^{2}}=1$, a $>0, b >0$, be a hyperbola such that the sum of lengths of the transverse and the conjugate axes is $4(2 \sqrt{2}+\sqrt{14})$. If the eccentricity $H$ is $\frac{\sqrt{11}}{2}$, then value of $a^{2}+b^{2}$ is equal to

A

$89$

B

$90$

C

$87$

D

$88$

(JEE MAIN-2022)

Solution

$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$

Given $e^{2}=1+\frac{b^{2}}{a^{2}} \Rightarrow \frac{11}{4}=1+\frac{b^{2}}{a^{2}} \Rightarrow b^{2}=\frac{7}{4} a^{2}$

$\therefore \frac{x^{2}}{(a)^{2}}-\frac{y^{2}}{\left(\frac{\sqrt{7}}{2} a\right)^{2}}=1$ Now given

$2 a+2 \cdot \frac{\sqrt{7} a}{2}=4(2 \sqrt{2}+\sqrt{14})$

$a(2+\sqrt{7})=4 \sqrt{2}(2+\sqrt{7})$

$a=4 \sqrt{2} \Rightarrow a^{2}=32$

$b^{2}=\frac{7}{4} \times 16 \times 2=56$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.