Find the equation for the ellipse that satisfies the given conditions: Length of major axis $26$ foci $(±5,\,0)$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Length of major axis $=26 ;$ foci $=(\pm 5,\,0)$

since the foci are on the $x-$ axis, the major axis is along the $x-$ axis.

Therefore, the equation of the ellipse will be of the form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1,$ where a is the semimajor axis.

Accordingly, $2 a=26 \Rightarrow a=13$ and $c=5$

It is known that $a^{2}=b^{2}+c^{2}$

$\therefore 13^{2}=b^{2}+5^{2}$

$\Rightarrow 169=b^{2}+25$

$\Rightarrow b^{2}=169-25$

$\Rightarrow b=\sqrt{144}=12$

Thus, the equation of the ellipse is $\frac{x^{2}}{13^{2}}+\frac{y^{2}}{12^{2}}=1$ or $\frac{x^{2}}{169}+\frac{y^{2}}{144}=1$

Similar Questions

An ellipse is described by using an endless string which is passed over two pins. If the axes are $6\ cm$ and $4\ cm$, the necessary length of the string and the distance between the pins respectively in $cm$, are

The distance of the point $'\theta '$on the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ from a focus is

The number of values of $c$ such that line $y = cx + c$, $c \in R$ touches the curve $\frac{{{x^2}}}{4} + \frac{{{y^2}}}{1} = 1$ is

The eccentricity of the ellipse $4{x^2} + 9{y^2} + 8x + 36y + 4 = 0$ is

Consider two straight lines, each of which is tangent to both the circle $x ^2+ y ^2=\frac{1}{2}$ and the parabola $y^2=4 x$. Let these lines intersect at the point $Q$. Consider the ellipse whose center is at the origin $O (0,0)$ and whose semi-major axis is $OQ$. If the length of the minor axis of this ellipse is $\sqrt{2}$, then which of the following statement($s$) is (are) $TRUE$?

$(A)$ For the ellipse, the eccentricity is $\frac{1}{\sqrt{2}}$ and the length of the latus rectum is $1$

$(B)$ For the ellipse, the eccentricity is $\frac{1}{2}$ and the length of the latus rectum is $\frac{1}{2}$

$(C)$ The area of the region bounded by the ellipse between the lines $x=\frac{1}{\sqrt{2}}$ and $x=1$ is $\frac{1}{4 \sqrt{2}}(\pi-2)$

$(D)$ The area of the region bounded by the ellipse between the lines $x=\frac{1}{\sqrt{2}}$ and $x=1$ is $\frac{1}{16}(\pi-2)$

  • [IIT 2018]