Find the equation for the ellipse that satisfies the given conditions: Length of major axis $26$ foci $(±5,\,0)$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Length of major axis $=26 ;$ foci $=(\pm 5,\,0)$

since the foci are on the $x-$ axis, the major axis is along the $x-$ axis.

Therefore, the equation of the ellipse will be of the form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1,$ where a is the semimajor axis.

Accordingly, $2 a=26 \Rightarrow a=13$ and $c=5$

It is known that $a^{2}=b^{2}+c^{2}$

$\therefore 13^{2}=b^{2}+5^{2}$

$\Rightarrow 169=b^{2}+25$

$\Rightarrow b^{2}=169-25$

$\Rightarrow b=\sqrt{144}=12$

Thus, the equation of the ellipse is $\frac{x^{2}}{13^{2}}+\frac{y^{2}}{12^{2}}=1$ or $\frac{x^{2}}{169}+\frac{y^{2}}{144}=1$

Similar Questions

$P$ is a variable point on the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ with $AA'$ as the major axis. Then the maximum value of the area of $\Delta APA'$ is

Let $S$ and $S\,'$ be the foci of an ellipse and $B$ be any one of the extremities of its minor axis. If $\Delta S\,'BS$ is a right angled triangle with right angle at $B$ and area $(\Delta S\,'BS) = 8\,sq.$ units, then the length of a latus rectum of the ellipse is

  • [JEE MAIN 2019]

Consider the ellipse

$\frac{x^2}{4}+\frac{y^2}{3}=1$

Let $H (\alpha, 0), 0<\alpha<2$, be a point. A straight line drawn through $H$ parallel to the $y$-axis crosses the ellipse and its auxiliary circle at points $E$ and $F$ respectively, in the first quadrant. The tangent to the ellipse at the point $E$ intersects the positive $x$-axis at a point $G$. Suppose the straight line joining $F$ and the origin makes an angle $\phi$ with the positive $x$-axis.

$List-I$ $List-II$
If $\phi=\frac{\pi}{4}$, then the area of the triangle $F G H$ is ($P$) $\frac{(\sqrt{3}-1)^4}{8}$
If $\phi=\frac{\pi}{3}$, then the area of the triangle $F G H$ is ($Q$) $1$
If $\phi=\frac{\pi}{6}$, then the area of the triangle $F G H$ is ($R$) $\frac{3}{4}$
If $\phi=\frac{\pi}{12}$, then the area of the triangle $F G H$ is ($S$) $\frac{1}{2 \sqrt{3}}$
  ($T$) $\frac{3 \sqrt{3}}{2}$

The correct option is:

  • [IIT 2022]

The equation of tangent and normal at point $(3, -2)$ of ellipse $4{x^2} + 9{y^2} = 36$ are

Let $E$ be the ellipse $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1$ and $C$ be the circle ${x^2} + {y^2} = 9$. Let $P$ and $Q$ be the points $(1, 2)$ and $(2, 1)$ respectively. Then

  • [IIT 1994]