આપેલ શરતોનું સમાધાન કરતા ઉપવલયનું સમીકરણ શોધોઃ શિરોબિંદુઓ $(0,\,\pm 13),$ નાભિઓ $(0,\,±5)$
Vertices $(0,\,\pm 13),$ foci $(0,\,±5)$
Here, the vertices are on the $y-$ axis.
Therefore, the equation of the ellipse will be of the form $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1,$ where a is the semimajor axis.
Accordingly, $a=13$ and $c=5$
It is known that $a^{2}=b^{2}+c^{2}$
$\therefore 13^{2}=b^{2}+5^{2}$
$\Rightarrow 169=b^{2}+25$
$\Rightarrow b^{2}=169-25$
$\Rightarrow b=\sqrt{144}=12$
Thus, the equation of the ellipse is $\frac{x^{2}}{12^{2}}+\frac{y^{2}}{13^{2}}=1$ or $\frac{x^{2}}{144}+\frac{y^{2}}{169}=1$
ધારો કે $PQ$ એ પરવલય $y^{2}=4 x$ ની એક એવી નાભિજીવા છે કે જે બિંદુ $(3,0)$ આગળ $\frac{\pi}{2}$ નો ખૂણો આંતરે છે.ધારો કે રેખાખંડ $PQ$ એ ઉપવલય $E : \frac{x^{2}}{ a ^{2}}+\frac{y^{2}}{ b ^{2}}=1, a ^{2}> b ^{2}$ ની પણ નાભિજીવા છે. ને $e$ એ ઉપવલય $E$ ની ઉત્કેન્દ્રતા હોય,તો $\frac{1}{e^{2}}$ નું મૂલ્ય $\dots\dots$છે.
આપેલ શરતોનું સમાધાન કરતા ઉપવલયનું સમીકરણ શોધોઃ કેન્દ્ર ઊગમબિંદુ, પ્રધાન અક્ષ $y$-અક્ષ પર હોય અને બિંદુઓ $(3, 2)$ અને $(1, 6)$ માંથી પસાર થાય.
સમીકરણ $ \frac{{{x^2}}}{{10\,\, - \,\,a}}\,\, + \,\,\frac{{{y^2}}}{{4\,\, - \,\,a}}\,\, = \,\,1\,$ એ ઉપવલય છે તેમ ક્યારે દર્શાવે:
ઉપવલય $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{4}=1$, a $>2$, ની અંતર્ગત, જેનું એક શિરોબિંદુ આ ઉપવલયની મુખ્ય અક્ષનું એક અંત્ય બિંદુ હોય અને જેની એક બાજુ $y$-અક્ષને સમાંતર હોય તેવા ત્રિકોણનું મહત્તમ ક્ષેત્રફળ $6 \sqrt{3}$ છે. તો આ ઉપવલયની ઉત્કેન્દ્રતા ....... છે,
વક્રો $y^2=2 x$ અને $x^2+y^2=4 x$ પરના બિંદુુ $(2,2)$ આગળના સ્પર્શકો, તથા રેખા $x+y+2=0$ દ્વારા એક ત્રિકીણ રચવામાં આવે છે. જો તેના પરિવૃત્તની ત્રિજ્યા $r$ હોય, તી $r^2=.............$