10-2. Parabola, Ellipse, Hyperbola
medium

Find the equation for the ellipse that satisfies the given conditions: Vertices $(0,\,\pm 13),$ foci $(0,\,±5)$.

Option A
Option B
Option C
Option D

Solution

Vertices $(0,\,\pm 13),$ foci $(0,\,±5)$

Here, the vertices are on the $y-$ axis.

Therefore, the equation of the ellipse will be of the form $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1,$ where a is the semimajor axis.

Accordingly, $a=13$ and $c=5$

It is known that $a^{2}=b^{2}+c^{2}$

$\therefore 13^{2}=b^{2}+5^{2}$

$\Rightarrow 169=b^{2}+25$

$\Rightarrow b^{2}=169-25$

$\Rightarrow b=\sqrt{144}=12$

Thus, the equation of the ellipse is $\frac{x^{2}}{12^{2}}+\frac{y^{2}}{13^{2}}=1$ or $\frac{x^{2}}{144}+\frac{y^{2}}{169}=1$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.