Let $P$ be the point of intersection of the common tangents to the parabola $y^2 = 12x$ and the hyperbola $8x^2 -y^2 = 8$. If $S$ and $S'$ denote the foci of the hyperbola where $S$ lies on the positive $x-$ axis then $P$ divides $SS'$ in a ratio
$2 : 1$
$13 : 11$
$5 : 4$
$14 : 13$
The locus of the mid points of the chords of the hyperbola $\mathrm{x}^{2}-\mathrm{y}^{2}=4$, which touch the parabola $\mathrm{y}^{2}=8 \mathrm{x}$, is :
The asymptote of the hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}}= 1$ form with any tangent to the hyperbola a triangle whose area is $a^2$ $\tan$ $ \lambda $ in magnitude then its eccentricity is :
An ellipse $E: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ passes through the vertices of the hyperbola $H: \frac{x^{2}}{49}-\frac{y^{2}}{64}=-1$. Let the major and minor axes of the ellipse $E$ coincide with the transverse and conjugate axes of the hyperbola $H$. Let the product of the eccentricities of $E$ and $H$ be $\frac{1}{2}$. If $l$ is the length of the latus rectum of the ellipse $E$, then the value of $113\,l$ is equal to $....$
The line $y = mx + c$ touches the curve $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$, if
Find the equation of axis of the given hyperbola $\frac{{{x^2}}}{3} - \frac{{{y^2}}}{2} = 1$ which is equally inclined to the axes